Cargando…
Fully-Automated Volumetric MRI with Normative Ranges: Translation to Clinical Practice
Neurodegenerative disorders, such as Alzheimer’s disease (AD), are associated with characteristic patterns of neuropathological spread in the brain. Disease progression is usually accompanied by regional atrophy that can be detected noninvasively using structural magnetic resonance imaging (MRI). A...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444284/ https://www.ncbi.nlm.nih.gov/pubmed/19847042 http://dx.doi.org/10.3233/BEN-2009-0226 |
_version_ | 1783238694533070848 |
---|---|
author | Brewer, J. B. |
author_facet | Brewer, J. B. |
author_sort | Brewer, J. B. |
collection | PubMed |
description | Neurodegenerative disorders, such as Alzheimer’s disease (AD), are associated with characteristic patterns of neuropathological spread in the brain. Disease progression is usually accompanied by regional atrophy that can be detected noninvasively using structural magnetic resonance imaging (MRI). A wealth of data has demonstrated the value of quantitative measurements of regional atrophy in AD, suggesting that volumetric MRI (vMRI) may be a useful clinical tool. vMRI provides biological evidence of neurodegenerative disease in patients with cognitive impairment. However, several hurdles impede implementation of vMRI in clinical practice. These include a lack of standardized MRI acquisition protocols, spatial distortions in MRI data, labor-intensive vMRI methods susceptible to interoperator variability, a lack of normative ranges for volume measures, and difficulty integrating vMRI in clinical workflow. Advances in vMRI have resulted from multi-institutional studies of brain imaging, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and help address these challenges. New, fully-automated measures of brain structure volumes coupled with large, multi-center studies using standardized MRI protocols now allow the development of age-adjusted normative ranges for vMRI. Such advances are critical for providing physicians a framework for assessing the pattern and degree of regional atrophy in a patient's brain and applying vMRI in clinical practice. |
format | Online Article Text |
id | pubmed-5444284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | IOS Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-54442842017-06-05 Fully-Automated Volumetric MRI with Normative Ranges: Translation to Clinical Practice Brewer, J. B. Behav Neurol Research Article Neurodegenerative disorders, such as Alzheimer’s disease (AD), are associated with characteristic patterns of neuropathological spread in the brain. Disease progression is usually accompanied by regional atrophy that can be detected noninvasively using structural magnetic resonance imaging (MRI). A wealth of data has demonstrated the value of quantitative measurements of regional atrophy in AD, suggesting that volumetric MRI (vMRI) may be a useful clinical tool. vMRI provides biological evidence of neurodegenerative disease in patients with cognitive impairment. However, several hurdles impede implementation of vMRI in clinical practice. These include a lack of standardized MRI acquisition protocols, spatial distortions in MRI data, labor-intensive vMRI methods susceptible to interoperator variability, a lack of normative ranges for volume measures, and difficulty integrating vMRI in clinical workflow. Advances in vMRI have resulted from multi-institutional studies of brain imaging, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and help address these challenges. New, fully-automated measures of brain structure volumes coupled with large, multi-center studies using standardized MRI protocols now allow the development of age-adjusted normative ranges for vMRI. Such advances are critical for providing physicians a framework for assessing the pattern and degree of regional atrophy in a patient's brain and applying vMRI in clinical practice. IOS Press 2009 2009-10-21 /pmc/articles/PMC5444284/ /pubmed/19847042 http://dx.doi.org/10.3233/BEN-2009-0226 Text en Copyright © 2009 Hindawi Publishing Corporation and the authors. http://creativecommons.org/licenses/by/3.0 This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Brewer, J. B. Fully-Automated Volumetric MRI with Normative Ranges: Translation to Clinical Practice |
title | Fully-Automated Volumetric MRI with Normative Ranges: Translation to Clinical Practice |
title_full | Fully-Automated Volumetric MRI with Normative Ranges: Translation to Clinical Practice |
title_fullStr | Fully-Automated Volumetric MRI with Normative Ranges: Translation to Clinical Practice |
title_full_unstemmed | Fully-Automated Volumetric MRI with Normative Ranges: Translation to Clinical Practice |
title_short | Fully-Automated Volumetric MRI with Normative Ranges: Translation to Clinical Practice |
title_sort | fully-automated volumetric mri with normative ranges: translation to clinical practice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444284/ https://www.ncbi.nlm.nih.gov/pubmed/19847042 http://dx.doi.org/10.3233/BEN-2009-0226 |
work_keys_str_mv | AT brewerjb fullyautomatedvolumetricmriwithnormativerangestranslationtoclinicalpractice |