Cargando…

A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2

Metabotropic glutamate receptor 1 (mGluR1) function in Purkinje neurons (PNs) is essential for cerebellar development and for motor learning and altered mGluR1 signaling causes ataxia. Downstream of mGluR1, dysregulation of calcium homeostasis has been hypothesized as a key pathological event in gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Meera, Pratap, Pulst, Stefan, Otis, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444899/
https://www.ncbi.nlm.nih.gov/pubmed/28518055
http://dx.doi.org/10.7554/eLife.26377
_version_ 1783238789579145216
author Meera, Pratap
Pulst, Stefan
Otis, Thomas
author_facet Meera, Pratap
Pulst, Stefan
Otis, Thomas
author_sort Meera, Pratap
collection PubMed
description Metabotropic glutamate receptor 1 (mGluR1) function in Purkinje neurons (PNs) is essential for cerebellar development and for motor learning and altered mGluR1 signaling causes ataxia. Downstream of mGluR1, dysregulation of calcium homeostasis has been hypothesized as a key pathological event in genetic forms of ataxia but the underlying mechanisms remain unclear. We find in a spinocerebellar ataxia type 2 (SCA2) mouse model that calcium homeostasis in PNs is disturbed across a broad range of physiological conditions. At parallel fiber synapses, mGluR1-mediated excitatory postsynaptic currents (EPSCs) and associated calcium transients are increased and prolonged in SCA2 PNs. In SCA2 PNs, enhanced mGluR1 function is prevented by buffering [Ca(2+)] at normal resting levels while in wildtype PNs mGluR1 EPSCs are enhanced by elevated [Ca(2+)]. These findings demonstrate a deleterious positive feedback loop involving elevated intracellular calcium and enhanced mGluR1 function, a mechanism likely to contribute to PN dysfunction and loss in SCA2. DOI: http://dx.doi.org/10.7554/eLife.26377.001
format Online
Article
Text
id pubmed-5444899
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-54448992017-05-30 A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2 Meera, Pratap Pulst, Stefan Otis, Thomas eLife Neuroscience Metabotropic glutamate receptor 1 (mGluR1) function in Purkinje neurons (PNs) is essential for cerebellar development and for motor learning and altered mGluR1 signaling causes ataxia. Downstream of mGluR1, dysregulation of calcium homeostasis has been hypothesized as a key pathological event in genetic forms of ataxia but the underlying mechanisms remain unclear. We find in a spinocerebellar ataxia type 2 (SCA2) mouse model that calcium homeostasis in PNs is disturbed across a broad range of physiological conditions. At parallel fiber synapses, mGluR1-mediated excitatory postsynaptic currents (EPSCs) and associated calcium transients are increased and prolonged in SCA2 PNs. In SCA2 PNs, enhanced mGluR1 function is prevented by buffering [Ca(2+)] at normal resting levels while in wildtype PNs mGluR1 EPSCs are enhanced by elevated [Ca(2+)]. These findings demonstrate a deleterious positive feedback loop involving elevated intracellular calcium and enhanced mGluR1 function, a mechanism likely to contribute to PN dysfunction and loss in SCA2. DOI: http://dx.doi.org/10.7554/eLife.26377.001 eLife Sciences Publications, Ltd 2017-05-18 /pmc/articles/PMC5444899/ /pubmed/28518055 http://dx.doi.org/10.7554/eLife.26377 Text en © 2017, Meera et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Meera, Pratap
Pulst, Stefan
Otis, Thomas
A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2
title A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2
title_full A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2
title_fullStr A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2
title_full_unstemmed A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2
title_short A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2
title_sort positive feedback loop linking enhanced mglur function and basal calcium in spinocerebellar ataxia type 2
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444899/
https://www.ncbi.nlm.nih.gov/pubmed/28518055
http://dx.doi.org/10.7554/eLife.26377
work_keys_str_mv AT meerapratap apositivefeedbacklooplinkingenhancedmglurfunctionandbasalcalciuminspinocerebellarataxiatype2
AT pulststefan apositivefeedbacklooplinkingenhancedmglurfunctionandbasalcalciuminspinocerebellarataxiatype2
AT otisthomas apositivefeedbacklooplinkingenhancedmglurfunctionandbasalcalciuminspinocerebellarataxiatype2
AT meerapratap positivefeedbacklooplinkingenhancedmglurfunctionandbasalcalciuminspinocerebellarataxiatype2
AT pulststefan positivefeedbacklooplinkingenhancedmglurfunctionandbasalcalciuminspinocerebellarataxiatype2
AT otisthomas positivefeedbacklooplinkingenhancedmglurfunctionandbasalcalciuminspinocerebellarataxiatype2