Cargando…
Hybridizing Feature Selection and Feature Learning Approaches in QSAR Modeling for Drug Discovery
Quantitative structure–activity relationship modeling using machine learning techniques constitutes a complex computational problem, where the identification of the most informative molecular descriptors for predicting a specific target property plays a critical role. Two main general approaches can...
Autores principales: | Ponzoni, Ignacio, Sebastián-Pérez, Víctor, Requena-Triguero, Carlos, Roca, Carlos, Martínez, María J., Cravero, Fiorella, Díaz, Mónica F., Páez, Juan A., Arrayás, Ramón Gómez, Adrio, Javier, Campillo, Nuria E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445096/ https://www.ncbi.nlm.nih.gov/pubmed/28546583 http://dx.doi.org/10.1038/s41598-017-02114-3 |
Ejemplares similares
-
QSAR Classification Models for Predicting the Activity of Inhibitors of Beta-Secretase (BACE1) Associated with Alzheimer’s Disease
por: Ponzoni, Ignacio, et al.
Publicado: (2019) -
QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson’s Disease
por: Sebastián-Pérez, Víctor, et al.
Publicado: (2019) -
Visual analytics in cheminformatics: user-supervised descriptor selection for QSAR methods
por: Martínez, María Jimena, et al.
Publicado: (2015) -
Identification of new allosteric sites and modulators of AChE through computational and experimental tools
por: Roca, Carlos, et al.
Publicado: (2018) -
MoDeSuS: A Machine Learning Tool for Selection of Molecular Descriptors in QSAR Studies Applied to Molecular Informatics
por: Martínez, María Jimena, et al.
Publicado: (2019)