Cargando…
MQAPRank: improved global protein model quality assessment by learning-to-rank
BACKGROUND: Protein structure prediction has achieved a lot of progress during the last few decades and a greater number of models for a certain sequence can be predicted. Consequently, assessing the qualities of predicted protein models in perspective is one of the key components of successful prot...
Autores principales: | Jing, Xiaoyang, Dong, Qiwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445322/ https://www.ncbi.nlm.nih.gov/pubmed/28545390 http://dx.doi.org/10.1186/s12859-017-1691-z |
Ejemplares similares
-
Sorting protein decoys by machine-learning-to-rank
por: Jing, Xiaoyang, et al.
Publicado: (2016) -
RankAggreg, an R package for weighted rank aggregation
por: Pihur, Vasyl, et al.
Publicado: (2009) -
DOCKSCORE: a webserver for ranking protein-protein docked poses
por: Malhotra, Sony, et al.
Publicado: (2015) -
An R package for analyzing and modeling ranking data
por: Lee, Paul H, et al.
Publicado: (2013) -
SuRankCo: supervised ranking of contigs in de novo assemblies
por: Kuhring, Mathias, et al.
Publicado: (2015)