Cargando…
Intraperitoneal implantation of life-long telemetry transmitters in three rehabilitated harbor seal pups
BACKGROUND: Pinnipeds, including many phocid species of concern, are inaccessible and difficult to monitor for extended periods using conventional, externally attached telemetry devices that are shed during the annual molt. Archival satellite transmitters were implanted intraperitoneally into three...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445380/ https://www.ncbi.nlm.nih.gov/pubmed/28545460 http://dx.doi.org/10.1186/s12917-017-1060-1 |
Sumario: | BACKGROUND: Pinnipeds, including many phocid species of concern, are inaccessible and difficult to monitor for extended periods using conventional, externally attached telemetry devices that are shed during the annual molt. Archival satellite transmitters were implanted intraperitoneally into three stranded Pacific harbor seal pups (Phoca vitulina richardii) that completed rehabilitation, to evaluate the viability of this surgical technique for the deployment of life long telemetry devices in phocids. The life history transmitters record information throughout the life of the host and transmit data to orbiting satellites after extrusion following death. RESULTS: Surgeries were performed under general anesthesia and a single transmitter was inserted into the ventrocaudal abdominal cavity via a 7–8 cm incision along the ventral midline between the umbilicus and pubic symphysis or preputial opening in each animal. Surgeries lasted from 45 to 51 min, and anesthesic times ranged from 55 to 79 min. All animals recovered well, were released into dry holding pens overnight, and were given access to water the following day. All three animals exhibited an expected inflammatory response, with acute phase responses lasting approximately three to four weeks. All three animals were tracked via externally attached satellite transmitters after release at 58 to 78 days following surgery, and minimum post-release survival was confirmed through continued movement data received over 278 to 289 days. CONCLUSION: The initial findings of low morbidity and zero mortality encountered during captive observation and post-release tracking periods support the viability of this surgical technique for the implantation of long-term telemetry devices in phocids. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-017-1060-1) contains supplementary material, which is available to authorized users. |
---|