Cargando…

Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome

BACKGROUND: Epidemiological studies have linked exposures to ambient fine particulate matter (PM(2.5)) and traffic with autonomic nervous system imbalance (ANS) and cardiac pathophysiology, especially in individuals with preexisting disease. It is unclear whether metabolic syndrome (MetS) increases...

Descripción completa

Detalles Bibliográficos
Autores principales: Carll, Alex P., Crespo, Samir M., Filho, Mauricio S., Zati, Douglas H., Coull, Brent A., Diaz, Edgar A., Raimundo, Rodrigo D., Jaeger, Thomas N. G., Ricci-Vitor, Ana Laura, Papapostolou, Vasileios, Lawrence, Joy E., Garner, David M., Perry, Brigham S., Harkema, Jack R., Godleski, John J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445437/
https://www.ncbi.nlm.nih.gov/pubmed/28545487
http://dx.doi.org/10.1186/s12989-017-0196-2
_version_ 1783238890253975552
author Carll, Alex P.
Crespo, Samir M.
Filho, Mauricio S.
Zati, Douglas H.
Coull, Brent A.
Diaz, Edgar A.
Raimundo, Rodrigo D.
Jaeger, Thomas N. G.
Ricci-Vitor, Ana Laura
Papapostolou, Vasileios
Lawrence, Joy E.
Garner, David M.
Perry, Brigham S.
Harkema, Jack R.
Godleski, John J.
author_facet Carll, Alex P.
Crespo, Samir M.
Filho, Mauricio S.
Zati, Douglas H.
Coull, Brent A.
Diaz, Edgar A.
Raimundo, Rodrigo D.
Jaeger, Thomas N. G.
Ricci-Vitor, Ana Laura
Papapostolou, Vasileios
Lawrence, Joy E.
Garner, David M.
Perry, Brigham S.
Harkema, Jack R.
Godleski, John J.
author_sort Carll, Alex P.
collection PubMed
description BACKGROUND: Epidemiological studies have linked exposures to ambient fine particulate matter (PM(2.5)) and traffic with autonomic nervous system imbalance (ANS) and cardiac pathophysiology, especially in individuals with preexisting disease. It is unclear whether metabolic syndrome (MetS) increases susceptibility to the effects of PM(2.5). We hypothesized that exposure to traffic-derived primary and secondary organic aerosols (P + SOA) at ambient levels would cause autonomic and cardiovascular dysfunction in rats exhibiting features of MetS. Male Sprague Dawley (SD) rats were fed a high-fructose diet (HFrD) to induce MetS, and exposed to P + SOA (20.4 ± 0.9 μg/m(3)) for 12 days with time-matched comparison to filtered-air (FA) exposed MetS rats; normal diet (ND) SD rats were separately exposed to FA or P + SOA (56.3 ± 1.2 μg/m(3)). RESULTS: In MetS rats, P + SOA exposure decreased HRV, QTc, PR, and expiratory time overall (mean effect across the entirety of exposure), increased breathing rate overall, decreased baroreflex sensitivity (BRS) on three exposure days, and increased spontaneous atrioventricular (AV) block Mobitz Type II arrhythmia on exposure day 4 relative to FA-exposed animals receiving the same diet. Among ND rats, P + SOA decreased HRV only on day 1 and did not significantly alter BRS despite overall hypertensive responses relative to FA. Correlations between HRV, ECG, BRS, and breathing parameters suggested a role for autonomic imbalance in the pathophysiologic effects of P + SOA among MetS rats. Autonomic cardiovascular responses to P + SOA at ambient PM(2.5) levels were pronounced among MetS rats and indicated blunted vagal influence over cardiovascular physiology. CONCLUSIONS: Results support epidemiologic findings that MetS increases susceptibility to the adverse cardiac effects of ambient-level PM(2.5), potentially through ANS imbalance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-017-0196-2) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5445437
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-54454372017-05-30 Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome Carll, Alex P. Crespo, Samir M. Filho, Mauricio S. Zati, Douglas H. Coull, Brent A. Diaz, Edgar A. Raimundo, Rodrigo D. Jaeger, Thomas N. G. Ricci-Vitor, Ana Laura Papapostolou, Vasileios Lawrence, Joy E. Garner, David M. Perry, Brigham S. Harkema, Jack R. Godleski, John J. Part Fibre Toxicol Research BACKGROUND: Epidemiological studies have linked exposures to ambient fine particulate matter (PM(2.5)) and traffic with autonomic nervous system imbalance (ANS) and cardiac pathophysiology, especially in individuals with preexisting disease. It is unclear whether metabolic syndrome (MetS) increases susceptibility to the effects of PM(2.5). We hypothesized that exposure to traffic-derived primary and secondary organic aerosols (P + SOA) at ambient levels would cause autonomic and cardiovascular dysfunction in rats exhibiting features of MetS. Male Sprague Dawley (SD) rats were fed a high-fructose diet (HFrD) to induce MetS, and exposed to P + SOA (20.4 ± 0.9 μg/m(3)) for 12 days with time-matched comparison to filtered-air (FA) exposed MetS rats; normal diet (ND) SD rats were separately exposed to FA or P + SOA (56.3 ± 1.2 μg/m(3)). RESULTS: In MetS rats, P + SOA exposure decreased HRV, QTc, PR, and expiratory time overall (mean effect across the entirety of exposure), increased breathing rate overall, decreased baroreflex sensitivity (BRS) on three exposure days, and increased spontaneous atrioventricular (AV) block Mobitz Type II arrhythmia on exposure day 4 relative to FA-exposed animals receiving the same diet. Among ND rats, P + SOA decreased HRV only on day 1 and did not significantly alter BRS despite overall hypertensive responses relative to FA. Correlations between HRV, ECG, BRS, and breathing parameters suggested a role for autonomic imbalance in the pathophysiologic effects of P + SOA among MetS rats. Autonomic cardiovascular responses to P + SOA at ambient PM(2.5) levels were pronounced among MetS rats and indicated blunted vagal influence over cardiovascular physiology. CONCLUSIONS: Results support epidemiologic findings that MetS increases susceptibility to the adverse cardiac effects of ambient-level PM(2.5), potentially through ANS imbalance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-017-0196-2) contains supplementary material, which is available to authorized users. BioMed Central 2017-05-25 /pmc/articles/PMC5445437/ /pubmed/28545487 http://dx.doi.org/10.1186/s12989-017-0196-2 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Carll, Alex P.
Crespo, Samir M.
Filho, Mauricio S.
Zati, Douglas H.
Coull, Brent A.
Diaz, Edgar A.
Raimundo, Rodrigo D.
Jaeger, Thomas N. G.
Ricci-Vitor, Ana Laura
Papapostolou, Vasileios
Lawrence, Joy E.
Garner, David M.
Perry, Brigham S.
Harkema, Jack R.
Godleski, John J.
Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome
title Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome
title_full Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome
title_fullStr Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome
title_full_unstemmed Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome
title_short Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome
title_sort inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445437/
https://www.ncbi.nlm.nih.gov/pubmed/28545487
http://dx.doi.org/10.1186/s12989-017-0196-2
work_keys_str_mv AT carllalexp inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT cresposamirm inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT filhomauricios inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT zatidouglash inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT coullbrenta inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT diazedgara inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT raimundorodrigod inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT jaegerthomasng inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT riccivitoranalaura inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT papapostolouvasileios inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT lawrencejoye inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT garnerdavidm inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT perrybrighams inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT harkemajackr inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome
AT godleskijohnj inhaledambientleveltrafficderivedparticulatesdecreasecardiacvagalinfluenceandbaroreflexesandincreasearrhythmiainaratmodelofmetabolicsyndrome