Cargando…

Glycosylation and Lipids Working in Concert Direct CD2 Ectodomain Orientation and Presentation

[Image: see text] Proteins embedded in the plasma membrane mediate interactions with the cell environment and play decisive roles in many signaling events. For cell–cell recognition molecules, it is highly likely that their structures and behavior have been optimized in ways that overcome the limita...

Descripción completa

Detalles Bibliográficos
Autores principales: Polley, Anirban, Orłowski, Adam, Danne, Reinis, Gurtovenko, Andrey A., Bernardino de la Serna, Jorge, Eggeling, Christian, Davis, Simon J., Róg, Tomasz, Vattulainen, Ilpo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445502/
https://www.ncbi.nlm.nih.gov/pubmed/28191954
http://dx.doi.org/10.1021/acs.jpclett.6b02824
Descripción
Sumario:[Image: see text] Proteins embedded in the plasma membrane mediate interactions with the cell environment and play decisive roles in many signaling events. For cell–cell recognition molecules, it is highly likely that their structures and behavior have been optimized in ways that overcome the limitations of membrane tethering. In particular, the ligand binding regions of these proteins likely need to be maximally exposed. Here we show by means of atomistic simulations of membrane-bound CD2, a small cell adhesion receptor expressed by human T-cells and natural killer cells, that the presentation of its ectodomain is highly dependent on membrane lipids and receptor glycosylation acting in apparent unison. Detailed analysis shows that the underlying mechanism is based on electrostatic interactions complemented by steric interactions between glycans in the protein and the membrane surface. The findings are significant for understanding the factors that render membrane receptors accessible for binding and signaling.