Cargando…
Automatic integration using asymptotically optimal adaptive Simpson quadrature
We present a novel theoretical approach to the analysis of adaptive quadratures and adaptive Simpson quadratures in particular which leads to the construction of a new algorithm for automatic integration. For a given function [Formula: see text] with [Formula: see text] and possible endpoint singula...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445539/ https://www.ncbi.nlm.nih.gov/pubmed/28615737 http://dx.doi.org/10.1007/s00211-014-0684-3 |
_version_ | 1783238915293970432 |
---|---|
author | Plaskota, Leszek |
author_facet | Plaskota, Leszek |
author_sort | Plaskota, Leszek |
collection | PubMed |
description | We present a novel theoretical approach to the analysis of adaptive quadratures and adaptive Simpson quadratures in particular which leads to the construction of a new algorithm for automatic integration. For a given function [Formula: see text] with [Formula: see text] and possible endpoint singularities the algorithm produces an approximation to [Formula: see text] within a given [Formula: see text] asymptotically as [Formula: see text] . Moreover, it is optimal among all adaptive Simpson quadratures, i.e., needs the minimal number [Formula: see text] of function evaluations to obtain an [Formula: see text] -approximation and runs in time proportional to [Formula: see text] . |
format | Online Article Text |
id | pubmed-5445539 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-54455392017-06-12 Automatic integration using asymptotically optimal adaptive Simpson quadrature Plaskota, Leszek Numer Math (Heidelb) Article We present a novel theoretical approach to the analysis of adaptive quadratures and adaptive Simpson quadratures in particular which leads to the construction of a new algorithm for automatic integration. For a given function [Formula: see text] with [Formula: see text] and possible endpoint singularities the algorithm produces an approximation to [Formula: see text] within a given [Formula: see text] asymptotically as [Formula: see text] . Moreover, it is optimal among all adaptive Simpson quadratures, i.e., needs the minimal number [Formula: see text] of function evaluations to obtain an [Formula: see text] -approximation and runs in time proportional to [Formula: see text] . Springer Berlin Heidelberg 2014-11-25 2015 /pmc/articles/PMC5445539/ /pubmed/28615737 http://dx.doi.org/10.1007/s00211-014-0684-3 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Article Plaskota, Leszek Automatic integration using asymptotically optimal adaptive Simpson quadrature |
title | Automatic integration using asymptotically optimal adaptive Simpson quadrature |
title_full | Automatic integration using asymptotically optimal adaptive Simpson quadrature |
title_fullStr | Automatic integration using asymptotically optimal adaptive Simpson quadrature |
title_full_unstemmed | Automatic integration using asymptotically optimal adaptive Simpson quadrature |
title_short | Automatic integration using asymptotically optimal adaptive Simpson quadrature |
title_sort | automatic integration using asymptotically optimal adaptive simpson quadrature |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445539/ https://www.ncbi.nlm.nih.gov/pubmed/28615737 http://dx.doi.org/10.1007/s00211-014-0684-3 |
work_keys_str_mv | AT plaskotaleszek automaticintegrationusingasymptoticallyoptimaladaptivesimpsonquadrature |