Cargando…

Automatic integration using asymptotically optimal adaptive Simpson quadrature

We present a novel theoretical approach to the analysis of adaptive quadratures and adaptive Simpson quadratures in particular which leads to the construction of a new algorithm for automatic integration. For a given function [Formula: see text] with [Formula: see text] and possible endpoint singula...

Descripción completa

Detalles Bibliográficos
Autor principal: Plaskota, Leszek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445539/
https://www.ncbi.nlm.nih.gov/pubmed/28615737
http://dx.doi.org/10.1007/s00211-014-0684-3
_version_ 1783238915293970432
author Plaskota, Leszek
author_facet Plaskota, Leszek
author_sort Plaskota, Leszek
collection PubMed
description We present a novel theoretical approach to the analysis of adaptive quadratures and adaptive Simpson quadratures in particular which leads to the construction of a new algorithm for automatic integration. For a given function [Formula: see text] with [Formula: see text] and possible endpoint singularities the algorithm produces an approximation to [Formula: see text] within a given [Formula: see text] asymptotically as [Formula: see text] . Moreover, it is optimal among all adaptive Simpson quadratures, i.e., needs the minimal number [Formula: see text] of function evaluations to obtain an [Formula: see text] -approximation and runs in time proportional to [Formula: see text] .
format Online
Article
Text
id pubmed-5445539
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-54455392017-06-12 Automatic integration using asymptotically optimal adaptive Simpson quadrature Plaskota, Leszek Numer Math (Heidelb) Article We present a novel theoretical approach to the analysis of adaptive quadratures and adaptive Simpson quadratures in particular which leads to the construction of a new algorithm for automatic integration. For a given function [Formula: see text] with [Formula: see text] and possible endpoint singularities the algorithm produces an approximation to [Formula: see text] within a given [Formula: see text] asymptotically as [Formula: see text] . Moreover, it is optimal among all adaptive Simpson quadratures, i.e., needs the minimal number [Formula: see text] of function evaluations to obtain an [Formula: see text] -approximation and runs in time proportional to [Formula: see text] . Springer Berlin Heidelberg 2014-11-25 2015 /pmc/articles/PMC5445539/ /pubmed/28615737 http://dx.doi.org/10.1007/s00211-014-0684-3 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Article
Plaskota, Leszek
Automatic integration using asymptotically optimal adaptive Simpson quadrature
title Automatic integration using asymptotically optimal adaptive Simpson quadrature
title_full Automatic integration using asymptotically optimal adaptive Simpson quadrature
title_fullStr Automatic integration using asymptotically optimal adaptive Simpson quadrature
title_full_unstemmed Automatic integration using asymptotically optimal adaptive Simpson quadrature
title_short Automatic integration using asymptotically optimal adaptive Simpson quadrature
title_sort automatic integration using asymptotically optimal adaptive simpson quadrature
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445539/
https://www.ncbi.nlm.nih.gov/pubmed/28615737
http://dx.doi.org/10.1007/s00211-014-0684-3
work_keys_str_mv AT plaskotaleszek automaticintegrationusingasymptoticallyoptimaladaptivesimpsonquadrature