Cargando…
Local two-sided bounds for eigenvalues of self-adjoint operators
We examine the equivalence between an extension of the Lehmann–Maehly–Goerisch method developed a few years ago by Zimmermann and Mertins, and a geometrically motivated method developed more recently by Davies and Plum. We establish a general framework which allows sharpening various previously know...
Autores principales: | Barrenechea, G. R., Boulton, L., Boussaïd, N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445552/ https://www.ncbi.nlm.nih.gov/pubmed/28615746 http://dx.doi.org/10.1007/s00211-016-0822-1 |
Ejemplares similares
-
Self-adjoint operators
por: Faris, William G
Publicado: (1975) -
Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary valve problems
por: Engeli, Max, et al.
Publicado: (1959) -
Bounds on the number of eigenvalues of the Schrödinger operator
por: Glaser, Vladimir Jurko, et al.
Publicado: (1977) -
Spectral theory of families of self-adjoint operators
por: Samoilenko, Yuril Stefanovich
Publicado: (1991) -
Unbounded Self-adjoint Operators on Hilbert Space
por: Schmüdgen, Konrad
Publicado: (2012)