Cargando…
An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage
BACKGROUND: Eukaryotic whole genome sequences are accumulating at an impressive rate. Effective methods for comparing multiple whole eukaryotic genomes on a large scale are needed. Most attempted solutions involve the production of large scale alignments, and many of these require a high stringency...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC544558/ https://www.ncbi.nlm.nih.gov/pubmed/15606920 http://dx.doi.org/10.1186/1471-2105-5-204 |
_version_ | 1782122149651152896 |
---|---|
author | Stuart, Gary W Berry, Michael W |
author_facet | Stuart, Gary W Berry, Michael W |
author_sort | Stuart, Gary W |
collection | PubMed |
description | BACKGROUND: Eukaryotic whole genome sequences are accumulating at an impressive rate. Effective methods for comparing multiple whole eukaryotic genomes on a large scale are needed. Most attempted solutions involve the production of large scale alignments, and many of these require a high stringency pre-screen for putative orthologs in order to reduce the effective size of the dataset and provide a reasonably high but unknown fraction of correctly aligned homologous sites for comparison. As an alternative, highly efficient methods that do not require the pre-alignment of operationally defined orthologs are also being explored. RESULTS: A non-alignment method based on the Singular Value Decomposition (SVD) was used to compare the predicted protein complement of nine whole eukaryotic genomes ranging from yeast to man. This analysis resulted in the simultaneous identification and definition of a large number of well conserved motifs and gene families, and produced a species tree supporting one of two conflicting hypotheses of metazoan relationships. CONCLUSIONS: Our SVD-based analysis of the entire protein complement of nine whole eukaryotic genomes suggests that highly conserved motifs and gene families can be identified and effectively compared in a single coherent definition space for the easy extraction of gene and species trees. While this occurs without the explicit definition of orthologs or homologous sites, the analysis can provide a basis for these definitions. |
format | Text |
id | pubmed-544558 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-5445582005-01-16 An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage Stuart, Gary W Berry, Michael W BMC Bioinformatics Research Article BACKGROUND: Eukaryotic whole genome sequences are accumulating at an impressive rate. Effective methods for comparing multiple whole eukaryotic genomes on a large scale are needed. Most attempted solutions involve the production of large scale alignments, and many of these require a high stringency pre-screen for putative orthologs in order to reduce the effective size of the dataset and provide a reasonably high but unknown fraction of correctly aligned homologous sites for comparison. As an alternative, highly efficient methods that do not require the pre-alignment of operationally defined orthologs are also being explored. RESULTS: A non-alignment method based on the Singular Value Decomposition (SVD) was used to compare the predicted protein complement of nine whole eukaryotic genomes ranging from yeast to man. This analysis resulted in the simultaneous identification and definition of a large number of well conserved motifs and gene families, and produced a species tree supporting one of two conflicting hypotheses of metazoan relationships. CONCLUSIONS: Our SVD-based analysis of the entire protein complement of nine whole eukaryotic genomes suggests that highly conserved motifs and gene families can be identified and effectively compared in a single coherent definition space for the easy extraction of gene and species trees. While this occurs without the explicit definition of orthologs or homologous sites, the analysis can provide a basis for these definitions. BioMed Central 2004-12-17 /pmc/articles/PMC544558/ /pubmed/15606920 http://dx.doi.org/10.1186/1471-2105-5-204 Text en Copyright © 2004 Stuart and Berry; licensee BioMed Central Ltd. |
spellingShingle | Research Article Stuart, Gary W Berry, Michael W An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage |
title | An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage |
title_full | An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage |
title_fullStr | An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage |
title_full_unstemmed | An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage |
title_short | An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage |
title_sort | svd-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC544558/ https://www.ncbi.nlm.nih.gov/pubmed/15606920 http://dx.doi.org/10.1186/1471-2105-5-204 |
work_keys_str_mv | AT stuartgaryw ansvdbasedcomparisonofninewholeeukaryoticgenomessupportsacoelomateratherthanecdysozoanlineage AT berrymichaelw ansvdbasedcomparisonofninewholeeukaryoticgenomessupportsacoelomateratherthanecdysozoanlineage AT stuartgaryw svdbasedcomparisonofninewholeeukaryoticgenomessupportsacoelomateratherthanecdysozoanlineage AT berrymichaelw svdbasedcomparisonofninewholeeukaryoticgenomessupportsacoelomateratherthanecdysozoanlineage |