Cargando…
Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations
In a recent work (Feischl et al. in Eng Anal Bound Elem 62:141–153, 2016), we analyzed a weighted-residual error estimator for isogeometric boundary element methods in 2D and proposed an adaptive algorithm which steers the local mesh-refinement of the underlying partition as well as the multiplicity...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445587/ https://www.ncbi.nlm.nih.gov/pubmed/28615749 http://dx.doi.org/10.1007/s00211-016-0836-8 |
Sumario: | In a recent work (Feischl et al. in Eng Anal Bound Elem 62:141–153, 2016), we analyzed a weighted-residual error estimator for isogeometric boundary element methods in 2D and proposed an adaptive algorithm which steers the local mesh-refinement of the underlying partition as well as the multiplicity of the knots. In the present work, we give a mathematical proof that this algorithm leads to convergence even with optimal algebraic rates. Technical contributions include a novel mesh-size function which also monitors the knot multiplicity as well as inverse estimates for NURBS in fractional-order Sobolev norms. |
---|