Cargando…
Calcium Orthophosphate Cements and Concretes
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a n...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445692/ http://dx.doi.org/10.3390/ma2010221 |
_version_ | 1783238940589817856 |
---|---|
author | Dorozhkin, Sergey V. |
author_facet | Dorozhkin, Sergey V. |
author_sort | Dorozhkin, Sergey V. |
collection | PubMed |
description | In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided. |
format | Online Article Text |
id | pubmed-5445692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Molecular Diversity Preservation International |
record_format | MEDLINE/PubMed |
spelling | pubmed-54456922017-07-28 Calcium Orthophosphate Cements and Concretes Dorozhkin, Sergey V. Materials (Basel) Review In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided. Molecular Diversity Preservation International 2009-03-19 /pmc/articles/PMC5445692/ http://dx.doi.org/10.3390/ma2010221 Text en © 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Dorozhkin, Sergey V. Calcium Orthophosphate Cements and Concretes |
title | Calcium Orthophosphate Cements and Concretes |
title_full | Calcium Orthophosphate Cements and Concretes |
title_fullStr | Calcium Orthophosphate Cements and Concretes |
title_full_unstemmed | Calcium Orthophosphate Cements and Concretes |
title_short | Calcium Orthophosphate Cements and Concretes |
title_sort | calcium orthophosphate cements and concretes |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445692/ http://dx.doi.org/10.3390/ma2010221 |
work_keys_str_mv | AT dorozhkinsergeyv calciumorthophosphatecementsandconcretes |