Cargando…
Characterization by SEM, TEM and Quantum-Chemical Simulations of the Spherical Carbon with Nitrogen (SCN) Active Carbon Produced by Thermal Decomposition of Poly(vinylpyridine-divinylbenzene) Copolymer
Amorphous Spherical Carbon with Nitrogen (SCN) active carbon has been prepared by carbonization of poly(vinylpyridine-divinylbenzene) (PVPDVB) copolymer. The PVPDVB dehydrogenation copolymer has been quantum chemically (QC) simulated using cluster and periodic models. Scanning electron microscopy (S...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445732/ http://dx.doi.org/10.3390/ma2031239 |
Sumario: | Amorphous Spherical Carbon with Nitrogen (SCN) active carbon has been prepared by carbonization of poly(vinylpyridine-divinylbenzene) (PVPDVB) copolymer. The PVPDVB dehydrogenation copolymer has been quantum chemically (QC) simulated using cluster and periodic models. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) studies of the resulting product have conformed the QC computation results. Great structural similarity is found both at the nano- and micro-levels between the N-doped SCN carbon and its pure carbonic SKS analog. |
---|