Cargando…
End-Grafted Polymer Chains onto Inorganic Nano-Objects
Organic/inorganic nanohybrid materials have attracted particular scientific and technological interest because they combine the properties of the organic and the inorganic component. Inorganic nanoparticles exhibit interesting electrical, optical, magnetic and/or catalytic properties, which are rela...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445879/ http://dx.doi.org/10.3390/ma3031981 |
Sumario: | Organic/inorganic nanohybrid materials have attracted particular scientific and technological interest because they combine the properties of the organic and the inorganic component. Inorganic nanoparticles exhibit interesting electrical, optical, magnetic and/or catalytic properties, which are related with their nano-scale dimensions. However, their high surface-to-volume ratio often induces agglomeration and leads to the loss of their attractive properties. Surface modification of the inorganic nano-objects with physically or chemically end-tethered polymer chains has been employed to overcome this problem. Covalent tethered polymer chains are realized by three different approaches: the “grafting to”, the “grafting from” and the “grafting through” method. This article reviews the synthesis of end-grafted polymer chains onto inorganic nanoparticles using “controlled/living” polymerization techniques, which allow control over the polymer characteristics and the grafting density of the end-tethered polymer chains. |
---|