Cargando…
New Development in the Preparation of Micro/Nano-Wires of Molecular (Magnetic) Conductors
A lot of molecular (magnetic) conductors are prepared largely using charge-transfer (CT) salts of donor molecules with acceptor molecules or nonmagnetic or magnetic anions such as metal halides and oxides; their CT salts are usually obtained as bulk crystals, which are used to elucidate the electric...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445886/ http://dx.doi.org/10.3390/ma3031640 |
_version_ | 1783238987208458240 |
---|---|
author | Sugimoto, Toyonari Tanaka, Hisashi de Caro, Dominique Valade, Lydie |
author_facet | Sugimoto, Toyonari Tanaka, Hisashi de Caro, Dominique Valade, Lydie |
author_sort | Sugimoto, Toyonari |
collection | PubMed |
description | A lot of molecular (magnetic) conductors are prepared largely using charge-transfer (CT) salts of donor molecules with acceptor molecules or nonmagnetic or magnetic anions such as metal halides and oxides; their CT salts are usually obtained as bulk crystals, which are used to elucidate the electrical conducting (magnetic) properties. In contrast, a small number of micro/nano-crystals of the molecular (magnetic) conductors, especially micro/nano-wires, are known, of which highly conducting nanowires are necessary as a key component in the development of the next generation of nano-size transistors and spin-transistors. Very recently, we succeeded in preparing highly conductive micro/nano-wires of CT salts between bent donor molecules developed by one of the author’s group and magnetic FeX(4)(–) (X = Cl, Br) ions: (1) by electrochemical oxidation of the bent donor molecules with a silicon wafer electrode coated with a phospholipid multi-lamellar structure as well as, (ii) by electrochemical oxidation of the bent donor molecules with a large arc structure, in the presence of NBu(4)FeX(4) supporting electrolytes. This article reviews template-free and template-assisted methods developed so far for the preparation of micro/nano-wires of molecular (magnetic) conductors along with our new methods. The conducting properties of these micro/nano-wires are compared with those of the corresponding bulk crystals. |
format | Online Article Text |
id | pubmed-5445886 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Molecular Diversity Preservation International |
record_format | MEDLINE/PubMed |
spelling | pubmed-54458862017-07-28 New Development in the Preparation of Micro/Nano-Wires of Molecular (Magnetic) Conductors Sugimoto, Toyonari Tanaka, Hisashi de Caro, Dominique Valade, Lydie Materials (Basel) Review A lot of molecular (magnetic) conductors are prepared largely using charge-transfer (CT) salts of donor molecules with acceptor molecules or nonmagnetic or magnetic anions such as metal halides and oxides; their CT salts are usually obtained as bulk crystals, which are used to elucidate the electrical conducting (magnetic) properties. In contrast, a small number of micro/nano-crystals of the molecular (magnetic) conductors, especially micro/nano-wires, are known, of which highly conducting nanowires are necessary as a key component in the development of the next generation of nano-size transistors and spin-transistors. Very recently, we succeeded in preparing highly conductive micro/nano-wires of CT salts between bent donor molecules developed by one of the author’s group and magnetic FeX(4)(–) (X = Cl, Br) ions: (1) by electrochemical oxidation of the bent donor molecules with a silicon wafer electrode coated with a phospholipid multi-lamellar structure as well as, (ii) by electrochemical oxidation of the bent donor molecules with a large arc structure, in the presence of NBu(4)FeX(4) supporting electrolytes. This article reviews template-free and template-assisted methods developed so far for the preparation of micro/nano-wires of molecular (magnetic) conductors along with our new methods. The conducting properties of these micro/nano-wires are compared with those of the corresponding bulk crystals. Molecular Diversity Preservation International 2010-03-08 /pmc/articles/PMC5445886/ http://dx.doi.org/10.3390/ma3031640 Text en © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Sugimoto, Toyonari Tanaka, Hisashi de Caro, Dominique Valade, Lydie New Development in the Preparation of Micro/Nano-Wires of Molecular (Magnetic) Conductors |
title | New Development in the Preparation of Micro/Nano-Wires of Molecular (Magnetic) Conductors |
title_full | New Development in the Preparation of Micro/Nano-Wires of Molecular (Magnetic) Conductors |
title_fullStr | New Development in the Preparation of Micro/Nano-Wires of Molecular (Magnetic) Conductors |
title_full_unstemmed | New Development in the Preparation of Micro/Nano-Wires of Molecular (Magnetic) Conductors |
title_short | New Development in the Preparation of Micro/Nano-Wires of Molecular (Magnetic) Conductors |
title_sort | new development in the preparation of micro/nano-wires of molecular (magnetic) conductors |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445886/ http://dx.doi.org/10.3390/ma3031640 |
work_keys_str_mv | AT sugimototoyonari newdevelopmentinthepreparationofmicronanowiresofmolecularmagneticconductors AT tanakahisashi newdevelopmentinthepreparationofmicronanowiresofmolecularmagneticconductors AT decarodominique newdevelopmentinthepreparationofmicronanowiresofmolecularmagneticconductors AT valadelydie newdevelopmentinthepreparationofmicronanowiresofmolecularmagneticconductors |