Cargando…

Genetic structuring, dispersal and taxonomy of the high-alpine populations of the Geranium arabicum/kilimandscharicum complex in tropical eastern Africa

The scattered eastern African high mountains harbor a renowned and highly endemic flora, but the taxonomy and phylogeographic history of many plant groups are still insufficiently known. The high-alpine populations of the Geranium arabicum/kilimandscharicum complex present intricate morphological va...

Descripción completa

Detalles Bibliográficos
Autores principales: Wondimu, Tigist, Gizaw, Abel, Tusiime, Felly M., Masao, Catherine A., Abdi, Ahmed A., Hou, Yan, Nemomissa, Sileshi, Brochmann, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446165/
https://www.ncbi.nlm.nih.gov/pubmed/28552970
http://dx.doi.org/10.1371/journal.pone.0178208
Descripción
Sumario:The scattered eastern African high mountains harbor a renowned and highly endemic flora, but the taxonomy and phylogeographic history of many plant groups are still insufficiently known. The high-alpine populations of the Geranium arabicum/kilimandscharicum complex present intricate morphological variation and have recently been suggested to comprise two new endemic taxa. Here we aim to contribute to a clarification of the taxonomy of these populations by analyzing genetic (AFLP) variation in range-wide high-alpine samples, and we address whether hybridization has contributed to taxonomic problems. We identified only two genetic groups. One corresponded to G. kilimandscharicum, which has been reported as exclusively high-alpine and confined to the eastern Rift mountains in East Africa. The other corresponded to G. arabicum, reported from lower altitudes on the same mountains as well as from a wide altitudinal span in Ethiopia and on the western Rift mountains in East Africa. The four populations analyzed of a recently described species from the Bale Mts in Ethiopia were admixed, indicating that they result from recent long-distance dispersal of G. kilimandscharicum from East Africa followed by hybridization with local G. arabicum in naturally disturbed habitats. Some admixture between the two genetic groups was also inferred on other mountains, supporting earlier suggestions of introgression based on morphology. We did not find support for recognition of the recently suggested new subspecies of G. arabicum in Ethiopia. Interestingly, the high-alpine G. kilimandscharicum lacked clear geographic structuring, suggesting a recent history of colonization of the different mountains or extensive intermountain gene flow.