Cargando…
Hard Superconducting Gap in InSb Nanowires
[Image: see text] Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topolog...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446204/ https://www.ncbi.nlm.nih.gov/pubmed/28355877 http://dx.doi.org/10.1021/acs.nanolett.7b00540 |
_version_ | 1783239025385013248 |
---|---|
author | Gül, Önder Zhang, Hao de Vries, Folkert K. van Veen, Jasper Zuo, Kun Mourik, Vincent Conesa-Boj, Sonia Nowak, Michał P. van Woerkom, David J. Quintero-Pérez, Marina Cassidy, Maja C. Geresdi, Attila Koelling, Sebastian Car, Diana Plissard, Sébastien R. Bakkers, Erik P. A. M. Kouwenhoven, Leo P. |
author_facet | Gül, Önder Zhang, Hao de Vries, Folkert K. van Veen, Jasper Zuo, Kun Mourik, Vincent Conesa-Boj, Sonia Nowak, Michał P. van Woerkom, David J. Quintero-Pérez, Marina Cassidy, Maja C. Geresdi, Attila Koelling, Sebastian Car, Diana Plissard, Sébastien R. Bakkers, Erik P. A. M. Kouwenhoven, Leo P. |
author_sort | Gül, Önder |
collection | PubMed |
description | [Image: see text] Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation. |
format | Online Article Text |
id | pubmed-5446204 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-54462042017-05-30 Hard Superconducting Gap in InSb Nanowires Gül, Önder Zhang, Hao de Vries, Folkert K. van Veen, Jasper Zuo, Kun Mourik, Vincent Conesa-Boj, Sonia Nowak, Michał P. van Woerkom, David J. Quintero-Pérez, Marina Cassidy, Maja C. Geresdi, Attila Koelling, Sebastian Car, Diana Plissard, Sébastien R. Bakkers, Erik P. A. M. Kouwenhoven, Leo P. Nano Lett [Image: see text] Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation. American Chemical Society 2017-03-29 2017-04-12 /pmc/articles/PMC5446204/ /pubmed/28355877 http://dx.doi.org/10.1021/acs.nanolett.7b00540 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Gül, Önder Zhang, Hao de Vries, Folkert K. van Veen, Jasper Zuo, Kun Mourik, Vincent Conesa-Boj, Sonia Nowak, Michał P. van Woerkom, David J. Quintero-Pérez, Marina Cassidy, Maja C. Geresdi, Attila Koelling, Sebastian Car, Diana Plissard, Sébastien R. Bakkers, Erik P. A. M. Kouwenhoven, Leo P. Hard Superconducting Gap in InSb Nanowires |
title | Hard Superconducting Gap in InSb Nanowires |
title_full | Hard Superconducting Gap in InSb Nanowires |
title_fullStr | Hard Superconducting Gap in InSb Nanowires |
title_full_unstemmed | Hard Superconducting Gap in InSb Nanowires |
title_short | Hard Superconducting Gap in InSb Nanowires |
title_sort | hard superconducting gap in insb nanowires |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446204/ https://www.ncbi.nlm.nih.gov/pubmed/28355877 http://dx.doi.org/10.1021/acs.nanolett.7b00540 |
work_keys_str_mv | AT gulonder hardsuperconductinggapininsbnanowires AT zhanghao hardsuperconductinggapininsbnanowires AT devriesfolkertk hardsuperconductinggapininsbnanowires AT vanveenjasper hardsuperconductinggapininsbnanowires AT zuokun hardsuperconductinggapininsbnanowires AT mourikvincent hardsuperconductinggapininsbnanowires AT conesabojsonia hardsuperconductinggapininsbnanowires AT nowakmichałp hardsuperconductinggapininsbnanowires AT vanwoerkomdavidj hardsuperconductinggapininsbnanowires AT quinteroperezmarina hardsuperconductinggapininsbnanowires AT cassidymajac hardsuperconductinggapininsbnanowires AT geresdiattila hardsuperconductinggapininsbnanowires AT koellingsebastian hardsuperconductinggapininsbnanowires AT cardiana hardsuperconductinggapininsbnanowires AT plissardsebastienr hardsuperconductinggapininsbnanowires AT bakkerserikpam hardsuperconductinggapininsbnanowires AT kouwenhovenleop hardsuperconductinggapininsbnanowires |