Cargando…

Hard Superconducting Gap in InSb Nanowires

[Image: see text] Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topolog...

Descripción completa

Detalles Bibliográficos
Autores principales: Gül, Önder, Zhang, Hao, de Vries, Folkert K., van Veen, Jasper, Zuo, Kun, Mourik, Vincent, Conesa-Boj, Sonia, Nowak, Michał P., van Woerkom, David J., Quintero-Pérez, Marina, Cassidy, Maja C., Geresdi, Attila, Koelling, Sebastian, Car, Diana, Plissard, Sébastien R., Bakkers, Erik P. A. M., Kouwenhoven, Leo P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446204/
https://www.ncbi.nlm.nih.gov/pubmed/28355877
http://dx.doi.org/10.1021/acs.nanolett.7b00540
_version_ 1783239025385013248
author Gül, Önder
Zhang, Hao
de Vries, Folkert K.
van Veen, Jasper
Zuo, Kun
Mourik, Vincent
Conesa-Boj, Sonia
Nowak, Michał P.
van Woerkom, David J.
Quintero-Pérez, Marina
Cassidy, Maja C.
Geresdi, Attila
Koelling, Sebastian
Car, Diana
Plissard, Sébastien R.
Bakkers, Erik P. A. M.
Kouwenhoven, Leo P.
author_facet Gül, Önder
Zhang, Hao
de Vries, Folkert K.
van Veen, Jasper
Zuo, Kun
Mourik, Vincent
Conesa-Boj, Sonia
Nowak, Michał P.
van Woerkom, David J.
Quintero-Pérez, Marina
Cassidy, Maja C.
Geresdi, Attila
Koelling, Sebastian
Car, Diana
Plissard, Sébastien R.
Bakkers, Erik P. A. M.
Kouwenhoven, Leo P.
author_sort Gül, Önder
collection PubMed
description [Image: see text] Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation.
format Online
Article
Text
id pubmed-5446204
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-54462042017-05-30 Hard Superconducting Gap in InSb Nanowires Gül, Önder Zhang, Hao de Vries, Folkert K. van Veen, Jasper Zuo, Kun Mourik, Vincent Conesa-Boj, Sonia Nowak, Michał P. van Woerkom, David J. Quintero-Pérez, Marina Cassidy, Maja C. Geresdi, Attila Koelling, Sebastian Car, Diana Plissard, Sébastien R. Bakkers, Erik P. A. M. Kouwenhoven, Leo P. Nano Lett [Image: see text] Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation. American Chemical Society 2017-03-29 2017-04-12 /pmc/articles/PMC5446204/ /pubmed/28355877 http://dx.doi.org/10.1021/acs.nanolett.7b00540 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Gül, Önder
Zhang, Hao
de Vries, Folkert K.
van Veen, Jasper
Zuo, Kun
Mourik, Vincent
Conesa-Boj, Sonia
Nowak, Michał P.
van Woerkom, David J.
Quintero-Pérez, Marina
Cassidy, Maja C.
Geresdi, Attila
Koelling, Sebastian
Car, Diana
Plissard, Sébastien R.
Bakkers, Erik P. A. M.
Kouwenhoven, Leo P.
Hard Superconducting Gap in InSb Nanowires
title Hard Superconducting Gap in InSb Nanowires
title_full Hard Superconducting Gap in InSb Nanowires
title_fullStr Hard Superconducting Gap in InSb Nanowires
title_full_unstemmed Hard Superconducting Gap in InSb Nanowires
title_short Hard Superconducting Gap in InSb Nanowires
title_sort hard superconducting gap in insb nanowires
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446204/
https://www.ncbi.nlm.nih.gov/pubmed/28355877
http://dx.doi.org/10.1021/acs.nanolett.7b00540
work_keys_str_mv AT gulonder hardsuperconductinggapininsbnanowires
AT zhanghao hardsuperconductinggapininsbnanowires
AT devriesfolkertk hardsuperconductinggapininsbnanowires
AT vanveenjasper hardsuperconductinggapininsbnanowires
AT zuokun hardsuperconductinggapininsbnanowires
AT mourikvincent hardsuperconductinggapininsbnanowires
AT conesabojsonia hardsuperconductinggapininsbnanowires
AT nowakmichałp hardsuperconductinggapininsbnanowires
AT vanwoerkomdavidj hardsuperconductinggapininsbnanowires
AT quinteroperezmarina hardsuperconductinggapininsbnanowires
AT cassidymajac hardsuperconductinggapininsbnanowires
AT geresdiattila hardsuperconductinggapininsbnanowires
AT koellingsebastian hardsuperconductinggapininsbnanowires
AT cardiana hardsuperconductinggapininsbnanowires
AT plissardsebastienr hardsuperconductinggapininsbnanowires
AT bakkerserikpam hardsuperconductinggapininsbnanowires
AT kouwenhovenleop hardsuperconductinggapininsbnanowires