Cargando…

Identifying low density lipoprotein cholesterol associated variants in the Annexin A2 (ANXA2) gene

BACKGROUND AND AIMS: Annexin-A2 (AnxA2) is an endogenous inhibitor of proprotein convertase subtilisin/kexin type-9 (PCSK9). The repeat-one (R1) domain of AnxA2 binds to PCSK9, blocking its ability to promote degradation of low-density lipoprotein cholesterol-receptors (LDL-R) and thereby regulate l...

Descripción completa

Detalles Bibliográficos
Autores principales: Fairoozy, Roaa Hani, Cooper, Jackie, White, Jon, Giambartolomei, Claudia, Folkersen, Lasse, Wannamethee, S. Goya, Jefferis, Barbara J., Whincup, Peter, Ben-Shlomo, Yoav, Kumari, Meena, Kivimaki, Mika, Wong, Andrew, Hardy, Rebecca, Kuh, Diana, Gaunt, Tom R., Casas, J.P., McLachlan, Stela, Price, Jackie F., Hingorani, Aroon, Franco-Cereceda, Anders, Grewal, Thomas, Kalea, Anastasia Z., Humphries, Steve E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446264/
https://www.ncbi.nlm.nih.gov/pubmed/28456096
http://dx.doi.org/10.1016/j.atherosclerosis.2017.04.010
Descripción
Sumario:BACKGROUND AND AIMS: Annexin-A2 (AnxA2) is an endogenous inhibitor of proprotein convertase subtilisin/kexin type-9 (PCSK9). The repeat-one (R1) domain of AnxA2 binds to PCSK9, blocking its ability to promote degradation of low-density lipoprotein cholesterol-receptors (LDL-R) and thereby regulate low-density lipoprotein cholesterol (LDL-C) levels. Here we identify variants in ANXA2 influencing LDL-C levels and we determine the molecular mechanisms of their effects. RESULTS: The ANXA2 single nucleotide polymorphism (SNP) genotype-phenotype association was examined using the Second-Northwick-Park Heart Study (NPHSII) (n∼2700) and the UCL-LSHTM-Edinburgh-Bristol (UCLEB) consortium (n∼14,600). The ANXA2-R1 domain coding-SNP rs17845226 (V98L) associated with LDL-C, homozygotes for the minor allele having ≈18.8% higher levels of LDL-C (p = 0.004), and higher risk of coronary heart disease (CHD) (p = 0.04). The SNP is in modest linkage disequilibrium (r(2) > 0.5) with two intergenic SNPs, rs17191344 and rs11633032. Both SNPs showed allele-specific protein binding, and the minor alleles caused significant reduction in reporter gene expression (≈18%, p < 0.001). In the expression quantitative trait loci (eQTL) study, minor allele homozygotes have significantly lower levels of ANXA2-mRNA expression (p = 1.36 × 10(−05)). CONCLUSIONS: Both rs11633032 and rs17191344 SNPs are functional variants, where the minor alleles create repressor-binding protein sites for transcription factors that contribute to reduced ANXA2 gene expression. Lower AnxA2 levels could increase plasma levels of PCSK9 and thus increase LDL-C levels and risk of CHD. This supports, for the first time in humans, previous observations in mouse models that changes in the levels of AnxA2 directly influence plasma LDL-C levels, and thus implicate this protein as a potential therapeutic target for LDL-C lowering.