Cargando…
Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk
Alzheimer’s disease (AD) is a highly heritable complex disease with no current effective prevention or treatment. The majority of drugs developed for AD focus on the amyloid cascade hypothesis, which implicates Aß plaques as a causal factor in the disease. However, it is possible that other underexp...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446752/ https://www.ncbi.nlm.nih.gov/pubmed/28549481 http://dx.doi.org/10.1186/s13024-017-0184-x |
_version_ | 1783239156296581120 |
---|---|
author | Efthymiou, Anastasia G. Goate, Alison M. |
author_facet | Efthymiou, Anastasia G. Goate, Alison M. |
author_sort | Efthymiou, Anastasia G. |
collection | PubMed |
description | Alzheimer’s disease (AD) is a highly heritable complex disease with no current effective prevention or treatment. The majority of drugs developed for AD focus on the amyloid cascade hypothesis, which implicates Aß plaques as a causal factor in the disease. However, it is possible that other underexplored disease-associated pathways may be more fruitful targets for drug development. Findings from gene network analyses implicate immune networks as being enriched in AD; many of the genes in these networks fall within genomic regions that contain common and rare variants that are associated with increased risk of developing AD. Of these genes, several (including CR1, SPI1, the MS4As, TREM2, ABCA7, CD33, and INPP5D) are expressed by microglia, the resident immune cells of the brain. We summarize the gene network and genetics findings that implicate that these microglial genes are involved in AD, as well as several studies that have looked at the expression and function of these genes in microglia and in the context of AD. We propose that these genes are contributing to AD in a non-Aß-dependent fashion. |
format | Online Article Text |
id | pubmed-5446752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-54467522017-05-30 Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk Efthymiou, Anastasia G. Goate, Alison M. Mol Neurodegener Review Alzheimer’s disease (AD) is a highly heritable complex disease with no current effective prevention or treatment. The majority of drugs developed for AD focus on the amyloid cascade hypothesis, which implicates Aß plaques as a causal factor in the disease. However, it is possible that other underexplored disease-associated pathways may be more fruitful targets for drug development. Findings from gene network analyses implicate immune networks as being enriched in AD; many of the genes in these networks fall within genomic regions that contain common and rare variants that are associated with increased risk of developing AD. Of these genes, several (including CR1, SPI1, the MS4As, TREM2, ABCA7, CD33, and INPP5D) are expressed by microglia, the resident immune cells of the brain. We summarize the gene network and genetics findings that implicate that these microglial genes are involved in AD, as well as several studies that have looked at the expression and function of these genes in microglia and in the context of AD. We propose that these genes are contributing to AD in a non-Aß-dependent fashion. BioMed Central 2017-05-26 /pmc/articles/PMC5446752/ /pubmed/28549481 http://dx.doi.org/10.1186/s13024-017-0184-x Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Review Efthymiou, Anastasia G. Goate, Alison M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk |
title | Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk |
title_full | Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk |
title_fullStr | Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk |
title_full_unstemmed | Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk |
title_short | Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk |
title_sort | late onset alzheimer’s disease genetics implicates microglial pathways in disease risk |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446752/ https://www.ncbi.nlm.nih.gov/pubmed/28549481 http://dx.doi.org/10.1186/s13024-017-0184-x |
work_keys_str_mv | AT efthymiouanastasiag lateonsetalzheimersdiseasegeneticsimplicatesmicroglialpathwaysindiseaserisk AT goatealisonm lateonsetalzheimersdiseasegeneticsimplicatesmicroglialpathwaysindiseaserisk |