Cargando…
Refining Automatically Extracted Knowledge Bases Using Crowdsourcing
Machine-constructed knowledge bases often contain noisy and inaccurate facts. There exists significant work in developing automated algorithms for knowledge base refinement. Automated approaches improve the quality of knowledge bases but are far from perfect. In this paper, we leverage crowdsourcing...
Autores principales: | Li, Chunhua, Zhao, Pengpeng, Sheng, Victor S., Xian, Xuefeng, Wu, Jian, Cui, Zhiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446892/ https://www.ncbi.nlm.nih.gov/pubmed/28588611 http://dx.doi.org/10.1155/2017/4092135 |
Ejemplares similares
-
A Radio-Map Automatic Construction Algorithm Based on Crowdsourcing
por: Yu, Ning, et al.
Publicado: (2016) -
Stratification-Based Outlier Detection over the Deep Web
por: Xian, Xuefeng, et al.
Publicado: (2016) -
Anatomy Ontology Matching Using Markov Logic Networks
por: Li, Chunhua, et al.
Publicado: (2016) -
An Active Learning Approach with Uncertainty, Representativeness, and Diversity
por: He, Tianxu, et al.
Publicado: (2014) -
Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition
por: Wu, Jian, et al.
Publicado: (2013)