Cargando…
Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
BACKGROUND: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since man...
Autores principales: | Khastavaneh, H., Ebrahimpour-Komleh, H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Journal of Biomedical Physics and Engineering
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447252/ https://www.ncbi.nlm.nih.gov/pubmed/28580337 |
Ejemplares similares
-
Automated Segmentation of Abnormal Tissues in Medical Images
por: Homayoun, Hassan, et al.
Publicado: (2021) -
Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence
por: McKinley, Richard, et al.
Publicado: (2019) -
Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation
por: González-Villà, Sandra, et al.
Publicado: (2017) -
Editorial: Automatic methods for multiple sclerosis new lesions detection and segmentation
por: Commowick, Olivier, et al.
Publicado: (2023) -
FLAIR(2) improves LesionTOADS automatic segmentation of multiple sclerosis lesions in non-homogenized, multi-center, 2D clinical magnetic resonance images
por: Le, M., et al.
Publicado: (2019)