Cargando…

Angiogenic Capacity of Dental Pulp Stem Cell Regulated by SDF-1α-CXCR4 Axis

Previously, the perivascular characteristics of dental pulp stem cells (DPSCs) were reported, which suggested the potential application of DPSCs as perivascular cell source. In this study, we investigated whether DPSCs had angiogenic capacity by coinjection with human umbilical vein endothelial cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Nam, Hyun, Kim, Gee-Hye, Bae, Yoon-Kyung, Jeong, Da-Eun, Joo, Kyeung-Min, Lee, Kyunghoon, Lee, Sun-Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447288/
https://www.ncbi.nlm.nih.gov/pubmed/28588623
http://dx.doi.org/10.1155/2017/8085462
Descripción
Sumario:Previously, the perivascular characteristics of dental pulp stem cells (DPSCs) were reported, which suggested the potential application of DPSCs as perivascular cell source. In this study, we investigated whether DPSCs had angiogenic capacity by coinjection with human umbilical vein endothelial cells (HUVECs) in vivo; in addition, we determined the role of stromal cell-derived factor 1-α (SDF-1α) and C-X-C chemokine receptor type 4 (CXCR4) axis in the mutual interaction between DPSCs and HUVECs. Primarily isolated DPSCs showed mesenchymal stem cell- (MSC-) like characteristics. Moreover, DPSCs expressed perivascular markers such as NG2, α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor β (PDGFRβ), and CD146. In vivo angiogenic capacity of DPSCs was demonstrated by in vivo Matrigel plug assay. We could observe microvessel-like structures in the coinjection of DPSCs and HUVECs at 7 days postinjection. To block SDF-1α and CXCR4 axis between DPSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into Matrigel plug. No significant microvessel-like structures were observed at 7 days postinjection. In conclusion, DPSCs have perivascular characteristics that contribute to in vivo angiogenesis. The findings of this study have potential applications in neovascularization of engineered tissues and vascular diseases.