Cargando…

Absence Seizure Control by a Brain Computer Interface

The ultimate goal of epileptology is the complete abolishment of epileptic seizures. This might be achieved by a system that predicts seizure onset combined with a system that interferes with the process that leads to the onset of a seizure. Seizure prediction remains, as of yet, unresolved in absen...

Descripción completa

Detalles Bibliográficos
Autores principales: Maksimenko, Vladimir A., van Heukelum, Sabrina, Makarov, Vladimir V., Kelderhuis, Janita, Lüttjohann, Annika, Koronovskii, Alexey A., Hramov, Alexander E., van Luijtelaar, Gilles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447660/
https://www.ncbi.nlm.nih.gov/pubmed/28555070
http://dx.doi.org/10.1038/s41598-017-02626-y
Descripción
Sumario:The ultimate goal of epileptology is the complete abolishment of epileptic seizures. This might be achieved by a system that predicts seizure onset combined with a system that interferes with the process that leads to the onset of a seizure. Seizure prediction remains, as of yet, unresolved in absence-epilepsy, due to the sudden onset of seizures. We have developed a real-time absence seizure prediction algorithm, evaluated it and implemented it in an on-line, closed-loop brain stimulation system designed to prevent the spike-wave-discharges (SWDs), typical for absence epilepsy, in a genetic rat model. The algorithm corretly predicted 88% of the SWDs while the remaining were quickly detected. A high number of false-positive detections occurred mainly during light slow-wave-sleep. Inclusion of criteria to prevent false-positives greatly reduced the false alarm rate but decreased the sensitivity of the algoritm. Implementation of the latter version into a closed-loop brain-stimulation-system resulted in a 72% decrease in seizure activity. In contrast to long standing beliefs that SWDs are unpredictable, these results demonstrate that they can be predicted and that the development of closed-loop seizure prediction and prevention systems is a feasable step towards interventions to attain control and freedom from epileptic seizures.