Cargando…
Pattern Recognition of Momentary Mental Workload Based on Multi-Channel Electrophysiological Data and Ensemble Convolutional Neural Networks
In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed we...
Autores principales: | Zhang, Jianhua, Li, Sunan, Wang, Rubin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447754/ https://www.ncbi.nlm.nih.gov/pubmed/28611583 http://dx.doi.org/10.3389/fnins.2017.00310 |
Ejemplares similares
-
Birdsong classification based on ensemble multi-scale convolutional neural network
por: Liu, Jiang, et al.
Publicado: (2022) -
Convolutional ensembles for Arabic Handwritten Character and Digit Recognition
por: Palatnik de Sousa, Iam
Publicado: (2018) -
Automatic ovarian tumors recognition system based on ensemble convolutional neural network with ultrasound imaging
por: Hsu, Shih-Tien, et al.
Publicado: (2022) -
Classification of Interstitial Lung Abnormality Patterns with an Ensemble of Deep Convolutional Neural Networks
por: Bermejo-Peláez, David, et al.
Publicado: (2020) -
Speech Emotion Recognition Using Convolution Neural Networks and Multi-Head Convolutional Transformer
por: Ullah, Rizwan, et al.
Publicado: (2023)