Cargando…
CIFAR10-DVS: An Event-Stream Dataset for Object Classification
Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently,...
Autores principales: | Li, Hongmin, Liu, Hanchao, Ji, Xiangyang, Li, Guoqi, Shi, Luping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447775/ https://www.ncbi.nlm.nih.gov/pubmed/28611582 http://dx.doi.org/10.3389/fnins.2017.00309 |
Ejemplares similares
-
DVS Benchmark Datasets for Object Tracking, Action Recognition, and Object Recognition
por: Hu, Yuhuang, et al.
Publicado: (2016) -
ES-ImageNet: A Million Event-Stream Classification Dataset for Spiking Neural Networks
por: Lin, Yihan, et al.
Publicado: (2021) -
Poker-DVS and MNIST-DVS. Their History, How They Were Made, and Other Details
por: Serrano-Gotarredona, Teresa, et al.
Publicado: (2015) -
Robust Event-Based Object Tracking Combining Correlation Filter and CNN Representation
por: Li, Hongmin, et al.
Publicado: (2019) -
dvs Informationen
Publicado: (2020)