Cargando…
Measurement of refractive indices of tunicates’ tunics: light reflection of the transparent integuments in an ascidian Rhopalaea sp. and a salp Thetys vagina
BACKGROUND: Tunic is a cellulosic, integumentary matrix found in tunicates (Subphylum Tunicata or Urochordata). The tunics of some ascidian species and pelagic tunicates, such as salps, are nearly transparent, which is useful in predator avoidance. Transparent materials can be detected visually usin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448145/ https://www.ncbi.nlm.nih.gov/pubmed/28560049 http://dx.doi.org/10.1186/s40851-017-0067-6 |
Sumario: | BACKGROUND: Tunic is a cellulosic, integumentary matrix found in tunicates (Subphylum Tunicata or Urochordata). The tunics of some ascidian species and pelagic tunicates, such as salps, are nearly transparent, which is useful in predator avoidance. Transparent materials can be detected visually using light reflected from their surfaces, with the different refractive indices between two media, i.e., tunic and seawater, being the measure of reflectance. A larger difference in refractive indices thus provides a larger measure of reflectance. RESULTS: We measured the refractive indices of the transparent tunic of Thetys vagina (salp: Thaliacea) and Rhopalaea sp. (ascidian: Ascidiacea) using an Abbe refractometer and an ellipsometer to estimate the light reflection at the tunic surface and evaluate the anti-reflection effect of the nipple array structure on the tunic surface of T. vagina. At D-line light (λ = 589 nm), the refractive indices of the tunics were 0.002–0.004 greater than seawater in the measurements by Abbe refractometer, and 0.02–0.03 greater than seawater in the measurements by ellipsometer. The refractive indices of tunics were slightly higher than that of seawater. According to the simulation of light reflection based on rigorous coupled wave analysis (RCWA), light at a large angle of incidence will be completely reflected from a surface when its refractive indices are smaller than seawater. Therefore, the refractive index of integument is important for enabling transparent organisms to remain invisible in the water column. CONCLUSION: In order to minimize reflectance, the refractive index should be similar to, but never smaller than, that of the surrounding seawater. The simulation also indicated that the presence or absence of a nipple array does not cause significant difference in reflectance on the surface. The nipple array on the tunic of the diurnal salp may have another function, such as bubble repellence, other than anti-reflection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40851-017-0067-6) contains supplementary material, which is available to authorized users. |
---|