Cargando…

Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

BACKGROUND: Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritan...

Descripción completa

Detalles Bibliográficos
Autores principales: Lynex, Clare N, Carr, Ian M, Leek, Jack P, Achuthan, Rajgopal, Mitchell, Simon, Maher, Eamonn R, Woods, C Geoffrey, Bonthon, David T, Markham, Alex F
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC544830/
https://www.ncbi.nlm.nih.gov/pubmed/15571623
http://dx.doi.org/10.1186/1471-2377-4-20
Descripción
Sumario:BACKGROUND: Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. METHODS: Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD(67)), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). RESULTS: A novel amino acid mis-sense mutation in GAD(67 )was detected, which segregated with CP in affected individuals. CONCLUSIONS: This result is interesting because auto-antibodies to GAD(67 )and the more widely studied GAD(65 )homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts.