Cargando…

In vitro Biocompatibility of New Silver(I) Coordination Compound Coated-Surfaces for Dental Implant Applications

Biofilm formation on implant materials causes a common problem: resistance to aggressive pharmacological agents as well as host defenses. Therefore, to reduce bacterial adhesion to implant surfaces we propose to use silver(I) coordination networks as it is known that silver is the most powerful anti...

Descripción completa

Detalles Bibliográficos
Autores principales: Brunetto, Priscilla S., Slenters, Tünde Vig, Fromm, Katharina M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448490/
https://www.ncbi.nlm.nih.gov/pubmed/28879994
http://dx.doi.org/10.3390/ma4020355
Descripción
Sumario:Biofilm formation on implant materials causes a common problem: resistance to aggressive pharmacological agents as well as host defenses. Therefore, to reduce bacterial adhesion to implant surfaces we propose to use silver(I) coordination networks as it is known that silver is the most powerful antimicrobial inorganic agent. As a model surface, self-assembled monolayers (SAMs) on gold Au(111) was used to permit permanent attachment of our silver(I) coordination networks. The surface coatings showed typical nano-structured surfaces with a good biocompatibility for soft-tissue integration with fibroblast cells.