Cargando…
Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion
Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain–computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated wi...
Autores principales: | Zafar, Raheel, Dass, Sarat C., Malik, Aamir Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448783/ https://www.ncbi.nlm.nih.gov/pubmed/28558002 http://dx.doi.org/10.1371/journal.pone.0178410 |
Ejemplares similares
-
Electroencephalogram Emotion Recognition Based on 3D Feature Fusion and Convolutional Autoencoder
por: An, Yanling, et al.
Publicado: (2021) -
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
Deep Convolutional Neural Network for EEG-Based Motor Decoding
por: Zhang, Jing, et al.
Publicado: (2022) -
Multimodal Personal Verification Using Likelihood Ratio for the Match Score Fusion
por: Binh Tran, Long, et al.
Publicado: (2017)