Cargando…
Mixture models reveal multiple positional bias types in RNA-Seq data and lead to accurate transcript concentration estimates
Accuracy of transcript quantification with RNA-Seq is negatively affected by positional fragment bias. This article introduces Mix(2) (rd. “mixquare”), a transcript quantification method which uses a mixture of probability distributions to model and thereby neutralize the effects of positional fragm...
Autores principales: | Tuerk, Andreas, Wiktorin, Gregor, Güler, Serhat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448817/ https://www.ncbi.nlm.nih.gov/pubmed/28505151 http://dx.doi.org/10.1371/journal.pcbi.1005515 |
Ejemplares similares
-
Bias in Estimation of a Mixture of Normal Distributions
por: Lourens, Spencer, et al.
Publicado: (2013) -
BCseq: accurate single cell RNA-seq quantification with bias correction
por: Chen, Liang, et al.
Publicado: (2018) -
TIGAR2: sensitive and accurate estimation of transcript isoform expression with longer RNA-Seq reads
por: Nariai, Naoki, et al.
Publicado: (2014) -
Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation
por: Love, Michael I., et al.
Publicado: (2016) -
Zea mays RNA-seq estimated transcript abundances are strongly affected by read mapping bias
por: Zhan, Shuhua, et al.
Publicado: (2021)