Cargando…
Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach
BACKGROUND: Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN) of organisms is important for understanding the structure and function of these fundamental cellular networks and essent...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC544888/ https://www.ncbi.nlm.nih.gov/pubmed/15603590 http://dx.doi.org/10.1186/1471-2105-5-199 |
_version_ | 1782122174127013888 |
---|---|
author | Ma, Hong-Wu Buer, Jan Zeng, An-Ping |
author_facet | Ma, Hong-Wu Buer, Jan Zeng, An-Ping |
author_sort | Ma, Hong-Wu |
collection | PubMed |
description | BACKGROUND: Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN) of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. RESULTS: In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif) in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. CONCLUSION: The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E. coli. Analysis of the distribution of feed forward loops and bi-fan motifs in the hierarchical structure suggests that these network motifs are not elementary building blocks of functional modules in the transcriptional regulatory network of E. coli. |
format | Text |
id | pubmed-544888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-5448882005-01-21 Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach Ma, Hong-Wu Buer, Jan Zeng, An-Ping BMC Bioinformatics Research Article BACKGROUND: Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN) of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. RESULTS: In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif) in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. CONCLUSION: The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E. coli. Analysis of the distribution of feed forward loops and bi-fan motifs in the hierarchical structure suggests that these network motifs are not elementary building blocks of functional modules in the transcriptional regulatory network of E. coli. BioMed Central 2004-12-16 /pmc/articles/PMC544888/ /pubmed/15603590 http://dx.doi.org/10.1186/1471-2105-5-199 Text en Copyright © 2004 Ma et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ma, Hong-Wu Buer, Jan Zeng, An-Ping Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach |
title | Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach |
title_full | Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach |
title_fullStr | Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach |
title_full_unstemmed | Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach |
title_short | Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach |
title_sort | hierarchical structure and modules in the escherichia coli transcriptional regulatory network revealed by a new top-down approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC544888/ https://www.ncbi.nlm.nih.gov/pubmed/15603590 http://dx.doi.org/10.1186/1471-2105-5-199 |
work_keys_str_mv | AT mahongwu hierarchicalstructureandmodulesintheescherichiacolitranscriptionalregulatorynetworkrevealedbyanewtopdownapproach AT buerjan hierarchicalstructureandmodulesintheescherichiacolitranscriptionalregulatorynetworkrevealedbyanewtopdownapproach AT zenganping hierarchicalstructureandmodulesintheescherichiacolitranscriptionalregulatorynetworkrevealedbyanewtopdownapproach |