Cargando…
Advances in Retinal Tissue Engineering
Retinal degenerations cause permanent visual loss and affect millions world-wide. Current treatment strategies, such as gene therapy and anti-angiogenic drugs, merely delay disease progression. Research is underway which aims to regenerate the diseased retina by transplanting a variety of cell types...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448948/ https://www.ncbi.nlm.nih.gov/pubmed/28817034 http://dx.doi.org/10.3390/ma5010108 |
_version_ | 1783239666232721408 |
---|---|
author | Trese, Matthew Regatieri, Caio V. Young, Michael J. |
author_facet | Trese, Matthew Regatieri, Caio V. Young, Michael J. |
author_sort | Trese, Matthew |
collection | PubMed |
description | Retinal degenerations cause permanent visual loss and affect millions world-wide. Current treatment strategies, such as gene therapy and anti-angiogenic drugs, merely delay disease progression. Research is underway which aims to regenerate the diseased retina by transplanting a variety of cell types, including embryonic stem cells, fetal cells, progenitor cells and induced pluripotent stem cells. Initial retinal transplantation studies injected stem and progenitor cells into the vitreous or subretinal space with the hope that these donor cells would migrate to the site of retinal degeneration, integrate within the host retina and restore functional vision. Despite promising outcomes, these studies showed that the bolus injection technique gave rise to poorly localized tissue grafts. Subsequently, retinal tissue engineers have drawn upon the success of bone, cartilage and vasculature tissue engineering by employing a polymeric tissue engineering approach. This review will describe the evolution of retinal tissue engineering to date, with particular emphasis on the types of polymers that have routinely been used in recent investigations. Further, this review will show that the field of retinal tissue engineering will require new types of materials and fabrication techniques that optimize the survival, differentiation and delivery of retinal transplant cells. |
format | Online Article Text |
id | pubmed-5448948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54489482017-07-28 Advances in Retinal Tissue Engineering Trese, Matthew Regatieri, Caio V. Young, Michael J. Materials (Basel) Review Retinal degenerations cause permanent visual loss and affect millions world-wide. Current treatment strategies, such as gene therapy and anti-angiogenic drugs, merely delay disease progression. Research is underway which aims to regenerate the diseased retina by transplanting a variety of cell types, including embryonic stem cells, fetal cells, progenitor cells and induced pluripotent stem cells. Initial retinal transplantation studies injected stem and progenitor cells into the vitreous or subretinal space with the hope that these donor cells would migrate to the site of retinal degeneration, integrate within the host retina and restore functional vision. Despite promising outcomes, these studies showed that the bolus injection technique gave rise to poorly localized tissue grafts. Subsequently, retinal tissue engineers have drawn upon the success of bone, cartilage and vasculature tissue engineering by employing a polymeric tissue engineering approach. This review will describe the evolution of retinal tissue engineering to date, with particular emphasis on the types of polymers that have routinely been used in recent investigations. Further, this review will show that the field of retinal tissue engineering will require new types of materials and fabrication techniques that optimize the survival, differentiation and delivery of retinal transplant cells. MDPI 2012-01-05 /pmc/articles/PMC5448948/ /pubmed/28817034 http://dx.doi.org/10.3390/ma5010108 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Trese, Matthew Regatieri, Caio V. Young, Michael J. Advances in Retinal Tissue Engineering |
title | Advances in Retinal Tissue Engineering |
title_full | Advances in Retinal Tissue Engineering |
title_fullStr | Advances in Retinal Tissue Engineering |
title_full_unstemmed | Advances in Retinal Tissue Engineering |
title_short | Advances in Retinal Tissue Engineering |
title_sort | advances in retinal tissue engineering |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448948/ https://www.ncbi.nlm.nih.gov/pubmed/28817034 http://dx.doi.org/10.3390/ma5010108 |
work_keys_str_mv | AT tresematthew advancesinretinaltissueengineering AT regatiericaiov advancesinretinaltissueengineering AT youngmichaelj advancesinretinaltissueengineering |