Cargando…
Influence of pH and Chloride Concentration on the Corrosion Behavior of Unalloyed Copper in NaCl Solution: A Comparative Study Between the Micro and Macro Scales
The effects of pH and chloride concentration on the electrochemical corrosion of copper in aqueous sodium chloride (NaCl) media were studied at the micro scale using a microcapillary droplet cell and at the macro scale using a conventional large scale cell. Using an experimental design strategy, ele...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449061/ http://dx.doi.org/10.3390/ma5122439 |
_version_ | 1783239697496014848 |
---|---|
author | Arjmand, Farzin Adriaens, Annemie |
author_facet | Arjmand, Farzin Adriaens, Annemie |
author_sort | Arjmand, Farzin |
collection | PubMed |
description | The effects of pH and chloride concentration on the electrochemical corrosion of copper in aqueous sodium chloride (NaCl) media were studied at the micro scale using a microcapillary droplet cell and at the macro scale using a conventional large scale cell. Using an experimental design strategy, electrochemical response surface models of copper versus pH and NaCl concentration were constructed with the minimum number of experiments required. Results show that the electrochemical behavior of copper under corrosive media shows significant differences between the micro and macro scale experiments. At the micro scale, the pit initiation of copper occurs at more negative potentials for high NaCl concentrations and alkaline pH values. Also, the micro scale potentiostatic measurements indicate higher stabilised passive currents at high NaCl concentrations and low (acidic) pH values. At the macro scale, the pH is shown to have a greater influence on the corrosion potential. The chloride concentration is the most significant factor in the passive current case while at the micro scale the effect of these two factors on the passive current was found to be the same. The surface morphology of the formed patina on the corroded copper in both micro and macro systems reveal a more significant role of the chloride concentration on the structure and the grain size of the patinas. Finally, micro and macro electrochemical impedance spectroscopy of copper at various NaCl concentrations and pH values demonstrates a different behavior of copper after several potentiodynamic polarization cycles. |
format | Online Article Text |
id | pubmed-5449061 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54490612017-07-28 Influence of pH and Chloride Concentration on the Corrosion Behavior of Unalloyed Copper in NaCl Solution: A Comparative Study Between the Micro and Macro Scales Arjmand, Farzin Adriaens, Annemie Materials (Basel) Article The effects of pH and chloride concentration on the electrochemical corrosion of copper in aqueous sodium chloride (NaCl) media were studied at the micro scale using a microcapillary droplet cell and at the macro scale using a conventional large scale cell. Using an experimental design strategy, electrochemical response surface models of copper versus pH and NaCl concentration were constructed with the minimum number of experiments required. Results show that the electrochemical behavior of copper under corrosive media shows significant differences between the micro and macro scale experiments. At the micro scale, the pit initiation of copper occurs at more negative potentials for high NaCl concentrations and alkaline pH values. Also, the micro scale potentiostatic measurements indicate higher stabilised passive currents at high NaCl concentrations and low (acidic) pH values. At the macro scale, the pH is shown to have a greater influence on the corrosion potential. The chloride concentration is the most significant factor in the passive current case while at the micro scale the effect of these two factors on the passive current was found to be the same. The surface morphology of the formed patina on the corroded copper in both micro and macro systems reveal a more significant role of the chloride concentration on the structure and the grain size of the patinas. Finally, micro and macro electrochemical impedance spectroscopy of copper at various NaCl concentrations and pH values demonstrates a different behavior of copper after several potentiodynamic polarization cycles. MDPI 2012-11-23 /pmc/articles/PMC5449061/ http://dx.doi.org/10.3390/ma5122439 Text en © 2012 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Arjmand, Farzin Adriaens, Annemie Influence of pH and Chloride Concentration on the Corrosion Behavior of Unalloyed Copper in NaCl Solution: A Comparative Study Between the Micro and Macro Scales |
title | Influence of pH and Chloride Concentration on the Corrosion Behavior of Unalloyed Copper in NaCl Solution: A Comparative Study Between the Micro and Macro Scales |
title_full | Influence of pH and Chloride Concentration on the Corrosion Behavior of Unalloyed Copper in NaCl Solution: A Comparative Study Between the Micro and Macro Scales |
title_fullStr | Influence of pH and Chloride Concentration on the Corrosion Behavior of Unalloyed Copper in NaCl Solution: A Comparative Study Between the Micro and Macro Scales |
title_full_unstemmed | Influence of pH and Chloride Concentration on the Corrosion Behavior of Unalloyed Copper in NaCl Solution: A Comparative Study Between the Micro and Macro Scales |
title_short | Influence of pH and Chloride Concentration on the Corrosion Behavior of Unalloyed Copper in NaCl Solution: A Comparative Study Between the Micro and Macro Scales |
title_sort | influence of ph and chloride concentration on the corrosion behavior of unalloyed copper in nacl solution: a comparative study between the micro and macro scales |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449061/ http://dx.doi.org/10.3390/ma5122439 |
work_keys_str_mv | AT arjmandfarzin influenceofphandchlorideconcentrationonthecorrosionbehaviorofunalloyedcopperinnaclsolutionacomparativestudybetweenthemicroandmacroscales AT adriaensannemie influenceofphandchlorideconcentrationonthecorrosionbehaviorofunalloyedcopperinnaclsolutionacomparativestudybetweenthemicroandmacroscales |