Cargando…
State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats
Brain-machine interfaces (BMIs) promise to improve the quality of life of patients suffering from sensory and motor disabilities by creating a direct communication channel between the brain and the external world. Yet, their performance is currently limited by the relatively small amount of informat...
Autores principales: | De Feo, Vito, Boi, Fabio, Safaai, Houman, Onken, Arno, Panzeri, Stefano, Vato, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449465/ https://www.ncbi.nlm.nih.gov/pubmed/28620273 http://dx.doi.org/10.3389/fnins.2017.00269 |
Ejemplares similares
-
Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces
por: Panzeri, Stefano, et al.
Publicado: (2016) -
A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder
por: Boi, Fabio, et al.
Publicado: (2016) -
A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields
por: Vato, Alessandro, et al.
Publicado: (2014) -
Space-by-time decomposition for single-trial decoding of M/EEG activity
por: Delis, Ioannis, et al.
Publicado: (2016) -
Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex
por: Tafazoli, Sina, et al.
Publicado: (2017)