Cargando…
A swimming robot actuated by living muscle tissue
Biomechatronics is the integration of biological components with artificial devices, in which the biological component confers a significant functional capability to the system, and the artificial component provides specific cellular and tissue interfaces that promote the maintenance and functional...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC544953/ https://www.ncbi.nlm.nih.gov/pubmed/15679914 http://dx.doi.org/10.1186/1743-0003-1-6 |
_version_ | 1782122183039909888 |
---|---|
author | Herr, Hugh Dennis, Robert G |
author_facet | Herr, Hugh Dennis, Robert G |
author_sort | Herr, Hugh |
collection | PubMed |
description | Biomechatronics is the integration of biological components with artificial devices, in which the biological component confers a significant functional capability to the system, and the artificial component provides specific cellular and tissue interfaces that promote the maintenance and functional adaptation of the biological component. Based upon functional performance, muscle is potentially an excellent mechanical actuator, but the larger challenge of developing muscle-actuated, biomechatronic devices poses many scientific and engineering challenges. As a demonstratory proof of concept, we designed, built, and characterized a swimming robot actuated by two explanted frog semitendinosus muscles and controlled by an embedded microcontroller. Using open loop stimulation protocols, the robot performed basic swimming maneuvers such as starting, stopping, turning (turning radius ~400 mm) and straight-line swimming (max speed >1/3 body lengths/second). A broad spectrum antibiotic/antimycotic ringer solution surrounded the muscle actuators for long term maintenance, ex vivo. The robot swam for a total of 4 hours over a 42 hour lifespan (10% duty cycle) before its velocity degraded below 75% of its maximum. The development of functional biomechatronic prototypes with integrated musculoskeletal tissues is the first critical step toward the long term objective of controllable, adaptive and robust biomechatronic robots and prostheses. |
format | Text |
id | pubmed-544953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-5449532005-01-26 A swimming robot actuated by living muscle tissue Herr, Hugh Dennis, Robert G J Neuroengineering Rehabil Research Biomechatronics is the integration of biological components with artificial devices, in which the biological component confers a significant functional capability to the system, and the artificial component provides specific cellular and tissue interfaces that promote the maintenance and functional adaptation of the biological component. Based upon functional performance, muscle is potentially an excellent mechanical actuator, but the larger challenge of developing muscle-actuated, biomechatronic devices poses many scientific and engineering challenges. As a demonstratory proof of concept, we designed, built, and characterized a swimming robot actuated by two explanted frog semitendinosus muscles and controlled by an embedded microcontroller. Using open loop stimulation protocols, the robot performed basic swimming maneuvers such as starting, stopping, turning (turning radius ~400 mm) and straight-line swimming (max speed >1/3 body lengths/second). A broad spectrum antibiotic/antimycotic ringer solution surrounded the muscle actuators for long term maintenance, ex vivo. The robot swam for a total of 4 hours over a 42 hour lifespan (10% duty cycle) before its velocity degraded below 75% of its maximum. The development of functional biomechatronic prototypes with integrated musculoskeletal tissues is the first critical step toward the long term objective of controllable, adaptive and robust biomechatronic robots and prostheses. BioMed Central 2004-10-28 /pmc/articles/PMC544953/ /pubmed/15679914 http://dx.doi.org/10.1186/1743-0003-1-6 Text en Copyright © 2004 Herr and Dennis; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Herr, Hugh Dennis, Robert G A swimming robot actuated by living muscle tissue |
title | A swimming robot actuated by living muscle tissue |
title_full | A swimming robot actuated by living muscle tissue |
title_fullStr | A swimming robot actuated by living muscle tissue |
title_full_unstemmed | A swimming robot actuated by living muscle tissue |
title_short | A swimming robot actuated by living muscle tissue |
title_sort | swimming robot actuated by living muscle tissue |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC544953/ https://www.ncbi.nlm.nih.gov/pubmed/15679914 http://dx.doi.org/10.1186/1743-0003-1-6 |
work_keys_str_mv | AT herrhugh aswimmingrobotactuatedbylivingmuscletissue AT dennisrobertg aswimmingrobotactuatedbylivingmuscletissue AT herrhugh swimmingrobotactuatedbylivingmuscletissue AT dennisrobertg swimmingrobotactuatedbylivingmuscletissue |