Cargando…

High Doses of Halotolerant Gut-Indigenous Lactobacillus plantarum Reduce Cultivable Lactobacilli in Newborn Calves without Increasing Its Species Abundance

To elucidate the ecological effect of high oral doses of halotolerant (resistant to table salt) indigenous-gut bacteria on other commensals early in life, we conducted a culture-based study to quantify the effect of intestinal Lactobacillus plantarum strain of bovine origin (with remarkable aerobic...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodriguez-Palacios, Alexander, Staempfli, Henry R., Weese, J. Scott
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449734/
https://www.ncbi.nlm.nih.gov/pubmed/28596790
http://dx.doi.org/10.1155/2017/2439025
_version_ 1783239840644464640
author Rodriguez-Palacios, Alexander
Staempfli, Henry R.
Weese, J. Scott
author_facet Rodriguez-Palacios, Alexander
Staempfli, Henry R.
Weese, J. Scott
author_sort Rodriguez-Palacios, Alexander
collection PubMed
description To elucidate the ecological effect of high oral doses of halotolerant (resistant to table salt) indigenous-gut bacteria on other commensals early in life, we conducted a culture-based study to quantify the effect of intestinal Lactobacillus plantarum strain of bovine origin (with remarkable aerobic growth capabilities and inhibitory activity against Escherichia coli O157:H7 and F5) on clinical health and gut lactobacilli/coliforms in newborn calves. In a double-blind placebo-randomized trial twelve colostrum-fed calves, consecutively born at a farm, were fed L. plantarum within 12 hours from birth at low (10(7-8) CFU/day) or high concentrations (10(10-11)) or placebo (q24 h, 5 d; 10 d follow-up). We developed a 2.5% NaCl-selective culture strategy to facilitate the enumeration of L. plantarum-strain-B80, and tested 384 samples (>1,152 cultures). L. plantarum-B80-like colonies were detected in a large proportion of calves (58%) even before their first 24 hours of life indicating endemic presence of the strain in the farm. In contrast to studies where human-derived Lactobacillus LGG or rhamnosus had notoriously high, but short-lived, colonization, we found that L. plantarum colonized stably with fecal shedding of 6 ± 1 log(10)·g(−1) (irrespective of dose, P > 0.2). High doses significantly reduced other fecal lactic acid bacteria (e.g., lactobacilli, P < 0.01) and slightly reduced body weight gain in calves after treatment. For the first time, a halotolerant strain of L. plantarum with inhibitory activity against a human pathogen has the ability to inhibit other lactobacilli in vivo without changing its species abundance, causing transintestinal translocation, or inducing clinical disease. The future selection of probiotics based on halotolerance may expand therapeutic product applicability.
format Online
Article
Text
id pubmed-5449734
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-54497342017-06-08 High Doses of Halotolerant Gut-Indigenous Lactobacillus plantarum Reduce Cultivable Lactobacilli in Newborn Calves without Increasing Its Species Abundance Rodriguez-Palacios, Alexander Staempfli, Henry R. Weese, J. Scott Int J Microbiol Research Article To elucidate the ecological effect of high oral doses of halotolerant (resistant to table salt) indigenous-gut bacteria on other commensals early in life, we conducted a culture-based study to quantify the effect of intestinal Lactobacillus plantarum strain of bovine origin (with remarkable aerobic growth capabilities and inhibitory activity against Escherichia coli O157:H7 and F5) on clinical health and gut lactobacilli/coliforms in newborn calves. In a double-blind placebo-randomized trial twelve colostrum-fed calves, consecutively born at a farm, were fed L. plantarum within 12 hours from birth at low (10(7-8) CFU/day) or high concentrations (10(10-11)) or placebo (q24 h, 5 d; 10 d follow-up). We developed a 2.5% NaCl-selective culture strategy to facilitate the enumeration of L. plantarum-strain-B80, and tested 384 samples (>1,152 cultures). L. plantarum-B80-like colonies were detected in a large proportion of calves (58%) even before their first 24 hours of life indicating endemic presence of the strain in the farm. In contrast to studies where human-derived Lactobacillus LGG or rhamnosus had notoriously high, but short-lived, colonization, we found that L. plantarum colonized stably with fecal shedding of 6 ± 1 log(10)·g(−1) (irrespective of dose, P > 0.2). High doses significantly reduced other fecal lactic acid bacteria (e.g., lactobacilli, P < 0.01) and slightly reduced body weight gain in calves after treatment. For the first time, a halotolerant strain of L. plantarum with inhibitory activity against a human pathogen has the ability to inhibit other lactobacilli in vivo without changing its species abundance, causing transintestinal translocation, or inducing clinical disease. The future selection of probiotics based on halotolerance may expand therapeutic product applicability. Hindawi 2017 2017-05-17 /pmc/articles/PMC5449734/ /pubmed/28596790 http://dx.doi.org/10.1155/2017/2439025 Text en Copyright © 2017 Alexander Rodriguez-Palacios et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Rodriguez-Palacios, Alexander
Staempfli, Henry R.
Weese, J. Scott
High Doses of Halotolerant Gut-Indigenous Lactobacillus plantarum Reduce Cultivable Lactobacilli in Newborn Calves without Increasing Its Species Abundance
title High Doses of Halotolerant Gut-Indigenous Lactobacillus plantarum Reduce Cultivable Lactobacilli in Newborn Calves without Increasing Its Species Abundance
title_full High Doses of Halotolerant Gut-Indigenous Lactobacillus plantarum Reduce Cultivable Lactobacilli in Newborn Calves without Increasing Its Species Abundance
title_fullStr High Doses of Halotolerant Gut-Indigenous Lactobacillus plantarum Reduce Cultivable Lactobacilli in Newborn Calves without Increasing Its Species Abundance
title_full_unstemmed High Doses of Halotolerant Gut-Indigenous Lactobacillus plantarum Reduce Cultivable Lactobacilli in Newborn Calves without Increasing Its Species Abundance
title_short High Doses of Halotolerant Gut-Indigenous Lactobacillus plantarum Reduce Cultivable Lactobacilli in Newborn Calves without Increasing Its Species Abundance
title_sort high doses of halotolerant gut-indigenous lactobacillus plantarum reduce cultivable lactobacilli in newborn calves without increasing its species abundance
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449734/
https://www.ncbi.nlm.nih.gov/pubmed/28596790
http://dx.doi.org/10.1155/2017/2439025
work_keys_str_mv AT rodriguezpalaciosalexander highdosesofhalotolerantgutindigenouslactobacillusplantarumreducecultivablelactobacilliinnewborncalveswithoutincreasingitsspeciesabundance
AT staempflihenryr highdosesofhalotolerantgutindigenouslactobacillusplantarumreducecultivablelactobacilliinnewborncalveswithoutincreasingitsspeciesabundance
AT weesejscott highdosesofhalotolerantgutindigenouslactobacillusplantarumreducecultivablelactobacilliinnewborncalveswithoutincreasingitsspeciesabundance