Cargando…

Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria

BACKGROUND: Major drawbacks of the available treatment against Chagas disease (American trypanosomiasis) include its toxicity and therapeutic inefficiency in the chronic phase of the infection, which makes it a concern among neglected diseases. Therefore, the discovery of alternative drugs for treat...

Descripción completa

Detalles Bibliográficos
Autores principales: Alexandre, Tatiana Rodrigues, Lima, Marta Lopes, Galuppo, Mariana Kolos, Mesquita, Juliana Tonini, do Nascimento, Matilia Ana, dos Santos, Augusto Leonardo, Sartorelli, Patricia, Pimenta, Daniel Carvalho, Tempone, Andre Gustavo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450401/
https://www.ncbi.nlm.nih.gov/pubmed/28572816
http://dx.doi.org/10.1186/s40409-017-0120-0
_version_ 1783239963947565056
author Alexandre, Tatiana Rodrigues
Lima, Marta Lopes
Galuppo, Mariana Kolos
Mesquita, Juliana Tonini
do Nascimento, Matilia Ana
dos Santos, Augusto Leonardo
Sartorelli, Patricia
Pimenta, Daniel Carvalho
Tempone, Andre Gustavo
author_facet Alexandre, Tatiana Rodrigues
Lima, Marta Lopes
Galuppo, Mariana Kolos
Mesquita, Juliana Tonini
do Nascimento, Matilia Ana
dos Santos, Augusto Leonardo
Sartorelli, Patricia
Pimenta, Daniel Carvalho
Tempone, Andre Gustavo
author_sort Alexandre, Tatiana Rodrigues
collection PubMed
description BACKGROUND: Major drawbacks of the available treatment against Chagas disease (American trypanosomiasis) include its toxicity and therapeutic inefficiency in the chronic phase of the infection, which makes it a concern among neglected diseases. Therefore, the discovery of alternative drugs for treating chronic Chagas disease requires immediate action. In this work, we evaluated the mushroom Pleurotus salmoneostramineus in the search for potential antiparasitic compounds. METHODS: Fruit bodies of the basidiomycete Pleurotus salmoneostramineus were triturated and submitted to organic solvent extraction. After liquid-liquid partition of the crude extract, three fractions were obtained and the bioguided fractionation study was conducted to isolate the active metabolites. The elucidation of the chemical structure was performed using GC-MS and NMR techniques. The biological assays for antiparasitic activity were carried out using trypomastigotes of Trypanosoma cruzi and murine macrophages for mammalian cytotoxicity. The mechanism of action of the isolated compound used different fluorescent probes to evaluate the plasma membrane permeability, the potential of the mitochondrial membrane and the intracellular levels of reactive oxygen species (ROS). RESULTS: The most abundant fraction showing the antiparasitic activity was isolated and chemically elucidated, confirming the presence of ergosterol. It showed anti-Trypanosoma cruzi activity against trypomastigotes, with an IC(50) value of 51.3 μg/mL. The compound demonstrated no cytotoxicity against mammalian cells to the maximal tested concentration of 200 μg/mL. The mechanism of action of ergosterol in Trypanosoma cruzi trypomastigotes resulted in permeabilization of the plasma membrane, as well as depolarization of mitochondrial membrane potential, leading to parasite death. Nevertheless, no increase in ROS levels could be observed, suggesting damages to plasma membrane rather than an induction of oxidative stress in the parasite. CONCLUSIONS: The selection of naturally antiparasitic secondary metabolites in basidiomycetes, such as ergosterol, may provide potential scaffolds for drug design studies against neglected diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40409-017-0120-0) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5450401
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-54504012017-06-01 Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria Alexandre, Tatiana Rodrigues Lima, Marta Lopes Galuppo, Mariana Kolos Mesquita, Juliana Tonini do Nascimento, Matilia Ana dos Santos, Augusto Leonardo Sartorelli, Patricia Pimenta, Daniel Carvalho Tempone, Andre Gustavo J Venom Anim Toxins Incl Trop Dis Research BACKGROUND: Major drawbacks of the available treatment against Chagas disease (American trypanosomiasis) include its toxicity and therapeutic inefficiency in the chronic phase of the infection, which makes it a concern among neglected diseases. Therefore, the discovery of alternative drugs for treating chronic Chagas disease requires immediate action. In this work, we evaluated the mushroom Pleurotus salmoneostramineus in the search for potential antiparasitic compounds. METHODS: Fruit bodies of the basidiomycete Pleurotus salmoneostramineus were triturated and submitted to organic solvent extraction. After liquid-liquid partition of the crude extract, three fractions were obtained and the bioguided fractionation study was conducted to isolate the active metabolites. The elucidation of the chemical structure was performed using GC-MS and NMR techniques. The biological assays for antiparasitic activity were carried out using trypomastigotes of Trypanosoma cruzi and murine macrophages for mammalian cytotoxicity. The mechanism of action of the isolated compound used different fluorescent probes to evaluate the plasma membrane permeability, the potential of the mitochondrial membrane and the intracellular levels of reactive oxygen species (ROS). RESULTS: The most abundant fraction showing the antiparasitic activity was isolated and chemically elucidated, confirming the presence of ergosterol. It showed anti-Trypanosoma cruzi activity against trypomastigotes, with an IC(50) value of 51.3 μg/mL. The compound demonstrated no cytotoxicity against mammalian cells to the maximal tested concentration of 200 μg/mL. The mechanism of action of ergosterol in Trypanosoma cruzi trypomastigotes resulted in permeabilization of the plasma membrane, as well as depolarization of mitochondrial membrane potential, leading to parasite death. Nevertheless, no increase in ROS levels could be observed, suggesting damages to plasma membrane rather than an induction of oxidative stress in the parasite. CONCLUSIONS: The selection of naturally antiparasitic secondary metabolites in basidiomycetes, such as ergosterol, may provide potential scaffolds for drug design studies against neglected diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40409-017-0120-0) contains supplementary material, which is available to authorized users. BioMed Central 2017-05-30 /pmc/articles/PMC5450401/ /pubmed/28572816 http://dx.doi.org/10.1186/s40409-017-0120-0 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Alexandre, Tatiana Rodrigues
Lima, Marta Lopes
Galuppo, Mariana Kolos
Mesquita, Juliana Tonini
do Nascimento, Matilia Ana
dos Santos, Augusto Leonardo
Sartorelli, Patricia
Pimenta, Daniel Carvalho
Tempone, Andre Gustavo
Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria
title Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria
title_full Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria
title_fullStr Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria
title_full_unstemmed Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria
title_short Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria
title_sort ergosterol isolated from the basidiomycete pleurotus salmoneostramineus affects trypanosoma cruzi plasma membrane and mitochondria
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450401/
https://www.ncbi.nlm.nih.gov/pubmed/28572816
http://dx.doi.org/10.1186/s40409-017-0120-0
work_keys_str_mv AT alexandretatianarodrigues ergosterolisolatedfromthebasidiomycetepleurotussalmoneostramineusaffectstrypanosomacruziplasmamembraneandmitochondria
AT limamartalopes ergosterolisolatedfromthebasidiomycetepleurotussalmoneostramineusaffectstrypanosomacruziplasmamembraneandmitochondria
AT galuppomarianakolos ergosterolisolatedfromthebasidiomycetepleurotussalmoneostramineusaffectstrypanosomacruziplasmamembraneandmitochondria
AT mesquitajulianatonini ergosterolisolatedfromthebasidiomycetepleurotussalmoneostramineusaffectstrypanosomacruziplasmamembraneandmitochondria
AT donascimentomatiliaana ergosterolisolatedfromthebasidiomycetepleurotussalmoneostramineusaffectstrypanosomacruziplasmamembraneandmitochondria
AT dossantosaugustoleonardo ergosterolisolatedfromthebasidiomycetepleurotussalmoneostramineusaffectstrypanosomacruziplasmamembraneandmitochondria
AT sartorellipatricia ergosterolisolatedfromthebasidiomycetepleurotussalmoneostramineusaffectstrypanosomacruziplasmamembraneandmitochondria
AT pimentadanielcarvalho ergosterolisolatedfromthebasidiomycetepleurotussalmoneostramineusaffectstrypanosomacruziplasmamembraneandmitochondria
AT temponeandregustavo ergosterolisolatedfromthebasidiomycetepleurotussalmoneostramineusaffectstrypanosomacruziplasmamembraneandmitochondria