Cargando…
Training Nuclei Detection Algorithms with Simple Annotations
BACKGROUND: Generating good training datasets is essential for machine learning-based nuclei detection methods. However, creating exhaustive nuclei contour annotations, to derive optimal training data from, is often infeasible. METHODS: We compared different approaches for training nuclei detection...
Autores principales: | Kost, Henning, Homeyer, André, Molin, Jesper, Lundström, Claes, Hahn, Horst Karl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450511/ https://www.ncbi.nlm.nih.gov/pubmed/28584683 http://dx.doi.org/10.4103/jpi.jpi_3_17 |
Ejemplares similares
-
Automated quantification of steatosis: agreement with stereological point counting
por: Homeyer, André, et al.
Publicado: (2017) -
Improving the creation and reporting of structured findings during digital pathology review
por: Cervin, Ida, et al.
Publicado: (2016) -
Implementation of large-scale routine diagnostics using whole slide imaging in Sweden: Digital pathology experiences 2006-2013
por: Thorstenson, Sten, et al.
Publicado: (2014) -
A comparative study of input devices for digital slide navigation
por: Molin, Jesper, et al.
Publicado: (2015) -
The thorny complexities of visualization research for clinical settings: A case study from genomics
por: Ståhlbom, Emilia, et al.
Publicado: (2023)