Cargando…
A power law global error model for the identification of differentially expressed genes in microarray data
BACKGROUND: High-density oligonucleotide microarray technology enables the discovery of genes that are transcriptionally modulated in different biological samples due to physiology, disease or intervention. Methods for the identification of these so-called "differentially expressed genes"...
Autores principales: | Pavelka, Norman, Pelizzola, Mattia, Vizzardelli, Caterina, Capozzoli, Monica, Splendiani, Andrea, Granucci, Francesca, Ricciardi-Castagnoli, Paola |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545082/ https://www.ncbi.nlm.nih.gov/pubmed/15606915 http://dx.doi.org/10.1186/1471-2105-5-203 |
Ejemplares similares
-
AMDA: an R package for the automated microarray data analysis
por: Pelizzola, Mattia, et al.
Publicado: (2006) -
The Genopolis Microarray Database
por: Splendiani, Andrea, et al.
Publicado: (2007) -
Can Zipf's law be adapted to normalize microarrays?
por: Lu, Tim, et al.
Publicado: (2005) -
A Contribution of Mouse Dendritic Cell–Derived IL-2 for NK Cell Activation
por: Granucci, Francesca, et al.
Publicado: (2004) -
Gene selection for classification of microarray data based on the Bayes error
por: Zhang, Ji-Gang, et al.
Publicado: (2007)