Cargando…
DrugSig: A resource for computational drug repositioning utilizing gene expression signatures
Computational drug repositioning has been proved as an effective approach to develop new drug uses. However, currently existing strategies strongly rely on drug response gene signatures which scattered in separated or individual experimental data, and resulted in low efficient outputs. So, a fully d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451001/ https://www.ncbi.nlm.nih.gov/pubmed/28562632 http://dx.doi.org/10.1371/journal.pone.0177743 |
Sumario: | Computational drug repositioning has been proved as an effective approach to develop new drug uses. However, currently existing strategies strongly rely on drug response gene signatures which scattered in separated or individual experimental data, and resulted in low efficient outputs. So, a fully drug response gene signatures database will be very helpful to these methods. We collected drug response microarray data and annotated related drug and targets information from public databases and scientific literature. By selecting top 500 up-regulated and down-regulated genes as drug signatures, we manually established the DrugSig database. Currently DrugSig contains more than 1300 drugs, 7000 microarray and 800 targets. Moreover, we developed the signature based and target based functions to aid drug repositioning. The constructed database can serve as a resource to quicken computational drug repositioning. Database URL: http://biotechlab.fudan.edu.cn/database/drugsig/. |
---|