Cargando…

Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semicon...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Ding, Seyler, Kyle L., Linpeng, Xiayu, Cheng, Ran, Sivadas, Nikhil, Huang, Bevin, Schmidgall, Emma, Taniguchi, Takashi, Watanabe, Kenji, McGuire, Michael A., Yao, Wang, Xiao, Di, Fu, Kai-Mei C., Xu, Xiaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451195/
https://www.ncbi.nlm.nih.gov/pubmed/28580423
http://dx.doi.org/10.1126/sciadv.1603113
_version_ 1783240133458264064
author Zhong, Ding
Seyler, Kyle L.
Linpeng, Xiayu
Cheng, Ran
Sivadas, Nikhil
Huang, Bevin
Schmidgall, Emma
Taniguchi, Takashi
Watanabe, Kenji
McGuire, Michael A.
Yao, Wang
Xiao, Di
Fu, Kai-Mei C.
Xu, Xiaodong
author_facet Zhong, Ding
Seyler, Kyle L.
Linpeng, Xiayu
Cheng, Ran
Sivadas, Nikhil
Huang, Bevin
Schmidgall, Emma
Taniguchi, Takashi
Watanabe, Kenji
McGuire, Michael A.
Yao, Wang
Xiao, Di
Fu, Kai-Mei C.
Xu, Xiaodong
author_sort Zhong, Ding
collection PubMed
description The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI(3) and a monolayer of WSe(2). We observe unprecedented control of the spin and valley pseudospin in WSe(2), where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe(2) valley splitting and polarization via flipping of the CrI(3) magnetization. The WSe(2) photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe(2) and the CrI(3) magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.
format Online
Article
Text
id pubmed-5451195
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-54511952017-06-02 Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics Zhong, Ding Seyler, Kyle L. Linpeng, Xiayu Cheng, Ran Sivadas, Nikhil Huang, Bevin Schmidgall, Emma Taniguchi, Takashi Watanabe, Kenji McGuire, Michael A. Yao, Wang Xiao, Di Fu, Kai-Mei C. Xu, Xiaodong Sci Adv Research Articles The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI(3) and a monolayer of WSe(2). We observe unprecedented control of the spin and valley pseudospin in WSe(2), where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe(2) valley splitting and polarization via flipping of the CrI(3) magnetization. The WSe(2) photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe(2) and the CrI(3) magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure. American Association for the Advancement of Science 2017-05-31 /pmc/articles/PMC5451195/ /pubmed/28580423 http://dx.doi.org/10.1126/sciadv.1603113 Text en Copyright © 2017, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Zhong, Ding
Seyler, Kyle L.
Linpeng, Xiayu
Cheng, Ran
Sivadas, Nikhil
Huang, Bevin
Schmidgall, Emma
Taniguchi, Takashi
Watanabe, Kenji
McGuire, Michael A.
Yao, Wang
Xiao, Di
Fu, Kai-Mei C.
Xu, Xiaodong
Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
title Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
title_full Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
title_fullStr Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
title_full_unstemmed Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
title_short Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
title_sort van der waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451195/
https://www.ncbi.nlm.nih.gov/pubmed/28580423
http://dx.doi.org/10.1126/sciadv.1603113
work_keys_str_mv AT zhongding vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT seylerkylel vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT linpengxiayu vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT chengran vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT sivadasnikhil vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT huangbevin vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT schmidgallemma vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT taniguchitakashi vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT watanabekenji vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT mcguiremichaela vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT yaowang vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT xiaodi vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT fukaimeic vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics
AT xuxiaodong vanderwaalsengineeringofferromagneticsemiconductorheterostructuresforspinandvalleytronics