Cargando…
Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca(2+) signaling in the Drosophila midgut
Precise regulation of stem cell activity is crucial for tissue homeostasis and necessary to prevent overproliferation. In the Drosophila adult gut, high levels of reactive oxygen species (ROS) has been detected with different types of tissue damage, and oxidative stress has been shown to be both nec...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451214/ https://www.ncbi.nlm.nih.gov/pubmed/28561738 http://dx.doi.org/10.7554/eLife.22441 |
_version_ | 1783240138936025088 |
---|---|
author | Xu, Chiwei Luo, Junjie He, Li Montell, Craig Perrimon, Norbert |
author_facet | Xu, Chiwei Luo, Junjie He, Li Montell, Craig Perrimon, Norbert |
author_sort | Xu, Chiwei |
collection | PubMed |
description | Precise regulation of stem cell activity is crucial for tissue homeostasis and necessary to prevent overproliferation. In the Drosophila adult gut, high levels of reactive oxygen species (ROS) has been detected with different types of tissue damage, and oxidative stress has been shown to be both necessary and sufficient to trigger intestinal stem cell (ISC) proliferation. However, the connection between oxidative stress and mitogenic signals remains obscure. In a screen for genes required for ISC proliferation in response to oxidative stress, we identified two regulators of cytosolic Ca(2+) levels, transient receptor potential A1 (TRPA1) and ryanodine receptor (RyR). Characterization of TRPA1 and RyR demonstrates that Ca(2+) signaling is required for oxidative stress-induced activation of the Ras/MAPK pathway, which in turns drives ISC proliferation. Our findings provide a link between redox regulation and Ca(2+) signaling and reveal a novel mechanism by which ISCs detect stress signals. DOI: http://dx.doi.org/10.7554/eLife.22441.001 |
format | Online Article Text |
id | pubmed-5451214 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-54512142017-06-01 Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca(2+) signaling in the Drosophila midgut Xu, Chiwei Luo, Junjie He, Li Montell, Craig Perrimon, Norbert eLife Cell Biology Precise regulation of stem cell activity is crucial for tissue homeostasis and necessary to prevent overproliferation. In the Drosophila adult gut, high levels of reactive oxygen species (ROS) has been detected with different types of tissue damage, and oxidative stress has been shown to be both necessary and sufficient to trigger intestinal stem cell (ISC) proliferation. However, the connection between oxidative stress and mitogenic signals remains obscure. In a screen for genes required for ISC proliferation in response to oxidative stress, we identified two regulators of cytosolic Ca(2+) levels, transient receptor potential A1 (TRPA1) and ryanodine receptor (RyR). Characterization of TRPA1 and RyR demonstrates that Ca(2+) signaling is required for oxidative stress-induced activation of the Ras/MAPK pathway, which in turns drives ISC proliferation. Our findings provide a link between redox regulation and Ca(2+) signaling and reveal a novel mechanism by which ISCs detect stress signals. DOI: http://dx.doi.org/10.7554/eLife.22441.001 eLife Sciences Publications, Ltd 2017-05-31 /pmc/articles/PMC5451214/ /pubmed/28561738 http://dx.doi.org/10.7554/eLife.22441 Text en © 2017, Xu et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cell Biology Xu, Chiwei Luo, Junjie He, Li Montell, Craig Perrimon, Norbert Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca(2+) signaling in the Drosophila midgut |
title | Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca(2+) signaling in the Drosophila midgut |
title_full | Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca(2+) signaling in the Drosophila midgut |
title_fullStr | Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca(2+) signaling in the Drosophila midgut |
title_full_unstemmed | Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca(2+) signaling in the Drosophila midgut |
title_short | Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca(2+) signaling in the Drosophila midgut |
title_sort | oxidative stress induces stem cell proliferation via trpa1/ryr-mediated ca(2+) signaling in the drosophila midgut |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451214/ https://www.ncbi.nlm.nih.gov/pubmed/28561738 http://dx.doi.org/10.7554/eLife.22441 |
work_keys_str_mv | AT xuchiwei oxidativestressinducesstemcellproliferationviatrpa1ryrmediatedca2signalinginthedrosophilamidgut AT luojunjie oxidativestressinducesstemcellproliferationviatrpa1ryrmediatedca2signalinginthedrosophilamidgut AT heli oxidativestressinducesstemcellproliferationviatrpa1ryrmediatedca2signalinginthedrosophilamidgut AT montellcraig oxidativestressinducesstemcellproliferationviatrpa1ryrmediatedca2signalinginthedrosophilamidgut AT perrimonnorbert oxidativestressinducesstemcellproliferationviatrpa1ryrmediatedca2signalinginthedrosophilamidgut |