Cargando…

Cooperation between a hierarchical set of recruitment sites targets the X chromosome for dosage compensation

In many organisms, it remains unclear how X chromosomes are specified for dosage compensation, since DNA sequence motifs shown to be important for dosage compensation complex (DCC) recruitment are themselves not X-specific. Here, we addressed this problem in C. elegans. We found that the DCC recruit...

Descripción completa

Detalles Bibliográficos
Autores principales: Albritton, Sarah Elizabeth, Kranz, Anna-Lena, Winterkorn, Lara Heermans, Street, Lena Annika, Ercan, Sevinc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451215/
https://www.ncbi.nlm.nih.gov/pubmed/28562241
http://dx.doi.org/10.7554/eLife.23645
Descripción
Sumario:In many organisms, it remains unclear how X chromosomes are specified for dosage compensation, since DNA sequence motifs shown to be important for dosage compensation complex (DCC) recruitment are themselves not X-specific. Here, we addressed this problem in C. elegans. We found that the DCC recruiter, SDC-2, is required to maintain open chromatin at a small number of primary DCC recruitment sites, whose sequence and genomic context are X-specific. Along the X, primary recruitment sites are interspersed with secondary sites, whose function is X-dependent. A secondary site can ectopically recruit the DCC when additional recruitment sites are inserted either in tandem or at a distance (>30 kb). Deletion of a recruitment site on the X results in reduced DCC binding across several megabases surrounded by topologically associating domain (TAD) boundaries. Our work elucidates that hierarchy and long-distance cooperativity between gene-regulatory elements target a single chromosome for regulation. DOI: http://dx.doi.org/10.7554/eLife.23645.001