Cargando…

The contact process on scale-free networks evolving by vertex updating

We study the contact process on a class of evolving scale-free networks, where each node updates its connections at independent random times. We give a rigorous mathematical proof that there is a transition between a phase where for all infection rates the infection survives for a long time, at leas...

Descripción completa

Detalles Bibliográficos
Autores principales: Jacob, Emmanuel, Mörters, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451815/
https://www.ncbi.nlm.nih.gov/pubmed/28573014
http://dx.doi.org/10.1098/rsos.170081
Descripción
Sumario:We study the contact process on a class of evolving scale-free networks, where each node updates its connections at independent random times. We give a rigorous mathematical proof that there is a transition between a phase where for all infection rates the infection survives for a long time, at least exponential in the network size, and a phase where for sufficiently small infection rates extinction occurs quickly, at most polynomially in the network size. The phase transition occurs when the power-law exponent crosses the value four. This behaviour is in contrast with that of the contact process on the corresponding static model, where there is no phase transition, as well as that of a classical mean-field approximation, which has a phase transition at power-law exponent three. The new observation behind our result is that temporal variability of networks can simultaneously increase the rate at which the infection spreads in the network, and decrease the time at which the infection spends in metastable states.