Cargando…

Evaluation of Drinking Water Disinfectant Byproducts Compliance Data as an Indirect Measure for Short-Term Exposure in Humans

In the absence of shorter term disinfectant byproducts (DBPs) data on regulated Trihalomethanes (THMs) and Haloacetic acids (HAAs), epidemiologists and risk assessors have used long-term annual compliance (LRAA) or quarterly (QA) data to evaluate the association between DBP exposure and adverse birt...

Descripción completa

Detalles Bibliográficos
Autores principales: Parvez, Shahid, Frost, Kali, Sundararajan, Madhura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451998/
https://www.ncbi.nlm.nih.gov/pubmed/28531123
http://dx.doi.org/10.3390/ijerph14050548
Descripción
Sumario:In the absence of shorter term disinfectant byproducts (DBPs) data on regulated Trihalomethanes (THMs) and Haloacetic acids (HAAs), epidemiologists and risk assessors have used long-term annual compliance (LRAA) or quarterly (QA) data to evaluate the association between DBP exposure and adverse birth outcomes, which resulted in inconclusive findings. Therefore, we evaluated the reliability of using long-term LRAA and QA data as an indirect measure for short-term exposure. Short-term residential tap water samples were collected in peak DBP months (May–August) in a community water system with five separate treatment stations and were sourced from surface or groundwater. Samples were analyzed for THMs and HAAs per the EPA (U.S. Environmental Protection Agency) standard methods (524.2 and 552.2). The measured levels of total THMs and HAAs were compared temporally and spatially with LRAA and QA data, which showed significant differences (p < 0.05). Most samples from surface water stations showed higher levels than LRAA or QA. Significant numbers of samples in surface water stations exceeded regulatory permissible limits: 27% had excessive THMs and 35% had excessive HAAs. Trichloromethane, trichloroacetic acid, and dichloroacetic acid were the major drivers of variability. This study suggests that LRAA and QA data are not good proxies of short-term exposure. Further investigation is needed to determine if other drinking water systems show consistent findings for improved regulation.