Cargando…
An Ensemble Spatiotemporal Model for Predicting PM(2.5) Concentrations
Although fine particulate matter with a diameter of <2.5 μm (PM(2.5)) has a greater negative impact on human health than particulate matter with a diameter of <10 μm (PM(10)), measurements of PM(2.5) have only recently been performed, and the spatial coverage of these measurements is limited....
Autores principales: | Li, Lianfa, Zhang, Jiehao, Qiu, Wenyang, Wang, Jinfeng, Fang, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451999/ https://www.ncbi.nlm.nih.gov/pubmed/28531151 http://dx.doi.org/10.3390/ijerph14050549 |
Ejemplares similares
-
PM2.5 Concentration Prediction Model: A CNN–RF Ensemble Framework
por: Chen, Mei-Hsin, et al.
Publicado: (2023) -
A spatiotemporal mixed model to assess the influence of environmental and socioeconomic factors on the incidence of hand, foot and mouth disease
por: Li, Lianfa, et al.
Publicado: (2018) -
A spatiotemporal XGBoost model for PM(2.5) concentration prediction and its application in Shanghai
por: Wang, Zidong, et al.
Publicado: (2023) -
Spatiotemporal Variations of Indoor PM(2.5) Concentrations in Nanjing, China
por: Shao, Zhijuan, et al.
Publicado: (2019) -
Spatial and temporal characteristics analysis and prediction model of PM(2.5) concentration based on SpatioTemporal-Informer model
por: Ma, Zhanfei, et al.
Publicado: (2023)