Cargando…
Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine
BACKGROUND: The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452637/ https://www.ncbi.nlm.nih.gov/pubmed/28569168 http://dx.doi.org/10.1186/s12934-017-0710-0 |
_version_ | 1783240473791430656 |
---|---|
author | Singh, Susheel K. Roeffen, Will Mistarz, Ulrik H. Chourasia, Bishwanath Kumar Yang, Fen Rand, Kasper D. Sauerwein, Robert W. Theisen, Michael |
author_facet | Singh, Susheel K. Roeffen, Will Mistarz, Ulrik H. Chourasia, Bishwanath Kumar Yang, Fen Rand, Kasper D. Sauerwein, Robert W. Theisen, Michael |
author_sort | Singh, Susheel K. |
collection | PubMed |
description | BACKGROUND: The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission. However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to produce high yields of recombinant protein as the native structure is required for the induction of functional transmission-blocking (TB) antibodies. We have investigated a downstream purification process of a sub-unit (R0.6C) fragment representing the C-terminal 6-Cys domain of Pfs48/45 (6C) genetically fused to the R0 region (R0) of asexual stage Glutamate Rich Protein expressed in Lactococcus lactis. RESULTS: A series of R0.6C fusion proteins containing features, which aim to increase expression levels or to facilitate protein purification, were evaluated at small scale. None of these modifications affected the overall yield of recombinant protein. Consequently, R0.6C with a C-terminal his tag was used for upstream and downstream process development. A simple work-flow was developed consisting of batch fermentation followed by two purification steps. As such, the recombinant protein was purified to homogeneity. The composition of the final product was verified by HPLC, mass spectrometry, SDS-PAGE and Western blotting with conformation dependent antibodies against Pfs48/45. The recombinant protein induced high levels of functional TB antibodies in rats. CONCLUSIONS: The established production and purification process of the R0.6C fusion protein provide a strong basis for further clinical development of this candidate transmission blocking malaria vaccine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-017-0710-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5452637 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-54526372017-06-02 Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine Singh, Susheel K. Roeffen, Will Mistarz, Ulrik H. Chourasia, Bishwanath Kumar Yang, Fen Rand, Kasper D. Sauerwein, Robert W. Theisen, Michael Microb Cell Fact Research BACKGROUND: The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission. However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to produce high yields of recombinant protein as the native structure is required for the induction of functional transmission-blocking (TB) antibodies. We have investigated a downstream purification process of a sub-unit (R0.6C) fragment representing the C-terminal 6-Cys domain of Pfs48/45 (6C) genetically fused to the R0 region (R0) of asexual stage Glutamate Rich Protein expressed in Lactococcus lactis. RESULTS: A series of R0.6C fusion proteins containing features, which aim to increase expression levels or to facilitate protein purification, were evaluated at small scale. None of these modifications affected the overall yield of recombinant protein. Consequently, R0.6C with a C-terminal his tag was used for upstream and downstream process development. A simple work-flow was developed consisting of batch fermentation followed by two purification steps. As such, the recombinant protein was purified to homogeneity. The composition of the final product was verified by HPLC, mass spectrometry, SDS-PAGE and Western blotting with conformation dependent antibodies against Pfs48/45. The recombinant protein induced high levels of functional TB antibodies in rats. CONCLUSIONS: The established production and purification process of the R0.6C fusion protein provide a strong basis for further clinical development of this candidate transmission blocking malaria vaccine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-017-0710-0) contains supplementary material, which is available to authorized users. BioMed Central 2017-05-31 /pmc/articles/PMC5452637/ /pubmed/28569168 http://dx.doi.org/10.1186/s12934-017-0710-0 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Singh, Susheel K. Roeffen, Will Mistarz, Ulrik H. Chourasia, Bishwanath Kumar Yang, Fen Rand, Kasper D. Sauerwein, Robert W. Theisen, Michael Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine |
title | Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine |
title_full | Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine |
title_fullStr | Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine |
title_full_unstemmed | Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine |
title_short | Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine |
title_sort | construct design, production, and characterization of plasmodium falciparum 48/45 r0.6c subunit protein produced in lactococcus lactis as candidate vaccine |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452637/ https://www.ncbi.nlm.nih.gov/pubmed/28569168 http://dx.doi.org/10.1186/s12934-017-0710-0 |
work_keys_str_mv | AT singhsusheelk constructdesignproductionandcharacterizationofplasmodiumfalciparum4845r06csubunitproteinproducedinlactococcuslactisascandidatevaccine AT roeffenwill constructdesignproductionandcharacterizationofplasmodiumfalciparum4845r06csubunitproteinproducedinlactococcuslactisascandidatevaccine AT mistarzulrikh constructdesignproductionandcharacterizationofplasmodiumfalciparum4845r06csubunitproteinproducedinlactococcuslactisascandidatevaccine AT chourasiabishwanathkumar constructdesignproductionandcharacterizationofplasmodiumfalciparum4845r06csubunitproteinproducedinlactococcuslactisascandidatevaccine AT yangfen constructdesignproductionandcharacterizationofplasmodiumfalciparum4845r06csubunitproteinproducedinlactococcuslactisascandidatevaccine AT randkasperd constructdesignproductionandcharacterizationofplasmodiumfalciparum4845r06csubunitproteinproducedinlactococcuslactisascandidatevaccine AT sauerweinrobertw constructdesignproductionandcharacterizationofplasmodiumfalciparum4845r06csubunitproteinproducedinlactococcuslactisascandidatevaccine AT theisenmichael constructdesignproductionandcharacterizationofplasmodiumfalciparum4845r06csubunitproteinproducedinlactococcuslactisascandidatevaccine |