Cargando…
Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program
BACKGROUND: The use of multiple genetic backgrounds across years is appealing for genomic prediction (GP) because past years’ data provide valuable information on marker effects. Nonetheless, single-year GP models are less complex and computationally less demanding than multi-year GP models. In devi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452640/ https://www.ncbi.nlm.nih.gov/pubmed/28569139 http://dx.doi.org/10.1186/s12863-017-0512-8 |
_version_ | 1783240474717323264 |
---|---|
author | Bernal-Vasquez, Angela-Maria Gordillo, Andres Schmidt, Malthe Piepho, Hans-Peter |
author_facet | Bernal-Vasquez, Angela-Maria Gordillo, Andres Schmidt, Malthe Piepho, Hans-Peter |
author_sort | Bernal-Vasquez, Angela-Maria |
collection | PubMed |
description | BACKGROUND: The use of multiple genetic backgrounds across years is appealing for genomic prediction (GP) because past years’ data provide valuable information on marker effects. Nonetheless, single-year GP models are less complex and computationally less demanding than multi-year GP models. In devising a suitable analysis strategy for multi-year data, we may exploit the fact that even if there is no replication of genotypes across years, there is plenty of replication at the level of marker loci. Our principal aim was to evaluate different GP approaches to simultaneously model genotype-by-year (GY) effects and breeding values using multi-year data in terms of predictive ability. The models were evaluated under different scenarios reflecting common practice in plant breeding programs, such as different degrees of relatedness between training and validation sets, and using a selected fraction of genotypes in the training set. We used empirical grain yield data of a rye hybrid breeding program. A detailed description of the prediction approaches highlighting the use of kinship for modeling GY is presented. RESULTS: Using the kinship to model GY was advantageous in particular for datasets disconnected across years. On average, predictive abilities were 5% higher for models using kinship to model GY over models without kinship. We confirmed that using data from multiple selection stages provides valuable GY information and helps increasing predictive ability. This increase is on average 30% higher when the predicted genotypes are closely related with the genotypes in the training set. A selection of top-yielding genotypes together with the use of kinship to model GY improves the predictive ability in datasets composed of single years of several selection cycles. CONCLUSIONS: Our results clearly demonstrate that the use of multi-year data and appropriate modeling is beneficial for GP because it allows dissecting GY effects from genomic estimated breeding values. The model choice, as well as ensuring that the predicted candidates are sufficiently related to the genotypes in the training set, are crucial. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-017-0512-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5452640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-54526402017-06-02 Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program Bernal-Vasquez, Angela-Maria Gordillo, Andres Schmidt, Malthe Piepho, Hans-Peter BMC Genet Research Article BACKGROUND: The use of multiple genetic backgrounds across years is appealing for genomic prediction (GP) because past years’ data provide valuable information on marker effects. Nonetheless, single-year GP models are less complex and computationally less demanding than multi-year GP models. In devising a suitable analysis strategy for multi-year data, we may exploit the fact that even if there is no replication of genotypes across years, there is plenty of replication at the level of marker loci. Our principal aim was to evaluate different GP approaches to simultaneously model genotype-by-year (GY) effects and breeding values using multi-year data in terms of predictive ability. The models were evaluated under different scenarios reflecting common practice in plant breeding programs, such as different degrees of relatedness between training and validation sets, and using a selected fraction of genotypes in the training set. We used empirical grain yield data of a rye hybrid breeding program. A detailed description of the prediction approaches highlighting the use of kinship for modeling GY is presented. RESULTS: Using the kinship to model GY was advantageous in particular for datasets disconnected across years. On average, predictive abilities were 5% higher for models using kinship to model GY over models without kinship. We confirmed that using data from multiple selection stages provides valuable GY information and helps increasing predictive ability. This increase is on average 30% higher when the predicted genotypes are closely related with the genotypes in the training set. A selection of top-yielding genotypes together with the use of kinship to model GY improves the predictive ability in datasets composed of single years of several selection cycles. CONCLUSIONS: Our results clearly demonstrate that the use of multi-year data and appropriate modeling is beneficial for GP because it allows dissecting GY effects from genomic estimated breeding values. The model choice, as well as ensuring that the predicted candidates are sufficiently related to the genotypes in the training set, are crucial. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-017-0512-8) contains supplementary material, which is available to authorized users. BioMed Central 2017-05-31 /pmc/articles/PMC5452640/ /pubmed/28569139 http://dx.doi.org/10.1186/s12863-017-0512-8 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Bernal-Vasquez, Angela-Maria Gordillo, Andres Schmidt, Malthe Piepho, Hans-Peter Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program |
title | Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program |
title_full | Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program |
title_fullStr | Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program |
title_full_unstemmed | Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program |
title_short | Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program |
title_sort | genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452640/ https://www.ncbi.nlm.nih.gov/pubmed/28569139 http://dx.doi.org/10.1186/s12863-017-0512-8 |
work_keys_str_mv | AT bernalvasquezangelamaria genomicpredictioninearlyselectionstagesusingmultiyeardatainahybridryebreedingprogram AT gordilloandres genomicpredictioninearlyselectionstagesusingmultiyeardatainahybridryebreedingprogram AT schmidtmalthe genomicpredictioninearlyselectionstagesusingmultiyeardatainahybridryebreedingprogram AT piephohanspeter genomicpredictioninearlyselectionstagesusingmultiyeardatainahybridryebreedingprogram |