Cargando…

IL-17A promotes the proliferation of human nasopharyngeal carcinoma cells through p300-mediated Akt1 acetylation

Interleukin (IL)-17A is a T helper (Th)17 cell-secreted cytokine that is able to induce various inflammatory responses. There is emerging evidence that IL-17A is generated in the cancer microenvironment of human nasopharyngeal carcinoma (NPC). However, the role of IL-17A in NPC remains unclear. Thus...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Kemin, Wang, Bing, Dou, Hongmei, Luan, Ronglan, Bao, Xueli, Chu, Jiusheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452892/
https://www.ncbi.nlm.nih.gov/pubmed/28588706
http://dx.doi.org/10.3892/ol.2017.5962
Descripción
Sumario:Interleukin (IL)-17A is a T helper (Th)17 cell-secreted cytokine that is able to induce various inflammatory responses. There is emerging evidence that IL-17A is generated in the cancer microenvironment of human nasopharyngeal carcinoma (NPC). However, the role of IL-17A in NPC remains unclear. Thus, the present study aimed to examine the direct influence of IL-17A stimulation on the proliferation of human NPC cells and identify the underlying molecular mechanisms. Furthermore, E1A binding protein p300 (p300)-mediated AKT serine/threonine kinase 1 (Akt1) acetylation and its role in regulating the proliferation of NPC cells was investigated. The results of the current study demonstrated that IL-17A stimulation in vitro increased the proliferation of human NPC cells. Furthermore, Akt1 acetylation was identified to be enhanced in human NPC cells induced by IL-17A. Additionally, p300 induction was demonstrated to be required for Akt1 acetylation in human NPC cells following exposure to IL-17A. Functionally, p300-mediated Akt1 acetylation contributed to the proliferation of human NPC cells stimulated by IL-17A. In conclusion, the results of the present demonstrate a novel activity of IL-17A that promotes human NPC cell proliferation via p300-mediated Akt1 acetylation. This may provide a potential strategy for the treatment of patients with NPC through the inhibition of IL-17A or its receptors.