Cargando…

Induction of cathepsin B by the CXCR3 chemokines CXCL9 and CXCL10 in human breast cancer cells

Cathepsin B (CTSB) is a lysosomal cysteine protease that has been linked to the progression of breast cancer, for example by activation of other proteases and tumor-promoting cytokines, thereby supporting tumor invasion and metastasis. Previously, it was shown that CTSB cleaves and inactivates C-X-C...

Descripción completa

Detalles Bibliográficos
Autores principales: Bronger, Holger, Karge, Anne, Dreyer, Tobias, Zech, Daniela, Kraeft, Sara, Avril, Stefanie, Kiechle, Marion, Schmitt, Manfred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453043/
https://www.ncbi.nlm.nih.gov/pubmed/28599423
http://dx.doi.org/10.3892/ol.2017.5994
Descripción
Sumario:Cathepsin B (CTSB) is a lysosomal cysteine protease that has been linked to the progression of breast cancer, for example by activation of other proteases and tumor-promoting cytokines, thereby supporting tumor invasion and metastasis. Previously, it was shown that CTSB cleaves and inactivates C-X-C motif chemokine receptor 3 (CXCR3) chemokines. As CXCR3 ligands have been demonstrated to induce proteases in cancer cells, the present study hypothesized that they may also affect CTSB in breast cancer cells. The results demonstrated that the human breast cancer tumor cell lines MCF-7 and MDA-MB-231 express the CXCR3 splice variants A and B and CTSB. Upon binding to CXCR3, the two chemokine ligands C-X-C motif chemokine ligand (CXCL) 9 and CXCL10 trigger upregulation of CTSB in these breast cancer cells, whereas the CXCR3-B-specific ligand CXCL4 has no such effect, suggesting the involvement of CXCR3-A in the regulation of CTSB. In early-stage human breast cancer specimens (n=81), overexpression of CXCR3 is associated with statistically significant poorer overall survival, independent of lymph node status, tumor size and nuclear grading (hazard ratio=1.99; 95% confidence interval=1.00–3.97; P=0.050). In conclusion, the data from the current study propose a so far unknown mechanism by which breast cancer cells may exploit tumor-suppressive chemokines to enhance their invasiveness and reduce immune cell infiltration by the degradation of these chemokines. This mechanism may support the established unfavorable prognostic feature of CXCR3 expression in breast cancer.